Paper: https://doi.org/jzwj
Artifact: https://doi.org/jzwk

Formalising the Prevention of
Microarchitectural Timing
Channels by Operating Systems

Formal Methods (FM), 7 March 2023

Robert Sison'.2, Scott Buckley?,
Toby Murray?, Gerwin Klein32, and Gernot Heiser?

JProofcrof’E:|

1The University of 2 UNSW Sydney, 3 Proofcraft,
Melbourne, Australia Australia Sydney, Australia

https://doi.org/jzwj
https://doi.org/jzwk

Paper: https://doi.org/jzwj
Artifact: https://doi.org/jzwk

Formalising the Prevention of
Microarchitectural Timing
Channels by Operating Systems

Formal Methods (FM), 7 March 2023

‘/\Robert Sison'.2, Scott Buckley?, U=
Toby Murray?, Gerwin Klein3.2,_and Gernot Heiser? 08

1The University of 2 UNSW Sydney, 3 Proofcraft,
Melbourne, Australia Australia Sydney, Australia

https://doi.org/jzwj
https://doi.org/jzwk

2

Threat scenario:
Trojan and spy

Memory

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

2

Threat scenario:
Trojan and spy

Memory

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

2

Threat scenario:
Victim/¥rejar and spy 7

V?

e ol

P

Memory

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

+
Side channels

S

®

2

Threat scenario:
Victim/¥rejar and spy 7

V?
.l

+
Side channels

S

®

Memory

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

v
4

2

Threat scenario:
Trojan and spy

Memory

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

+
Side channels

S

®

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement
®

memory protection. /Zg/

»

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement ©
memory protection. /Zg/
| 4
e But: Mere memory access can -
. Memory
change the microarch. state —

this affects timing.

wor [

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement
memory protection.
e But: Mere memory access can
. Memory
change the microarch. state —
this affects timing.
Cache

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement
®

memory protection.

l?

e But: Mere memory access can
. Memory
change the microarch. state —
this affects timing. Slow...
Cache

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement ©
memory protection.
e But: Mere memory access can -
. Memory
change the microarch. state —

this affects timing.

wor [

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement
®

memory protection. l’

 But: Mere memory access can
change the microarch. state —
this affects timing.

Memory

Fast!

wor [

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement ©
memory protection.
e But: Mere memory access can N -
. Memory
change the microarch. state — 1

this affects timing.

wor [

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement
®

memory protection.

lb

 But: Mere memory access can Memory
change the microarch. state —
this affects timing. Slow...
S knows
T accessed
that part
of memory!
Cache

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S

e (Ses typically implement ©
memory protection. l

 But: Mere memory access can Memory
change the microarch. state — L1 1]

this affects timing.

* To prevent these timing channels,

OSes can implement time protection:
e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache
(Partitionable)
e Partition what we can L1 + other
on-core caches -
* Flush what we can’t (Flushable)

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S

e (Ses typically implement ©
memory protection. l

 But: Mere memory access can Memory
change the microarch. state — L1 1]

this affects timing.

* To prevent these timing channels,

OSes can implement time protection:
e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache
(Partitionable)
e Partition what we can L1 + other
on-core caches [I:l
* Flush what we can’t (Flushable)

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement ©
memory protection. l

 But: Mere memory access can Memory
change the microarch. state — L1 1]

this affects timing.

* To prevent these timing channels,

OSes can implement time protection:
e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache |:I:.
(Partitionable)
e Partition what we can
L1 + other 0S switch
on-core caches ¢ Tto S
* Flush what we can’t (Flushable) rom 110

“Flush”: Write fixed content; wait up to fixed time.

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement

memory protection. ?

 But: Mere memory access can Memory
change the microarch. state — L1 1]

this affects timing.

* To prevent these timing channels,

OSes can implement time protection:

e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache
(Partitionable)

e Partition what we can L1 + other

on-core caches
* Flush what we can’t (Flushable)

- S is running

“Flush”: Write fixed content; wait up to fixed time.

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement ©
memory protection. l

 But: Mere memory access can Memory
change the microarch. state — L1 1]

this affects timing.

* To prevent these timing channels,

OSes can implement time protection:
e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache
(Partitionable)
e Partition what we can L1 + other |
- OS switch
on-core caches
e Flush what we can’t (Flushable) fromStoT

“Flush”: Write fixed content; wait up to fixed time.

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Tr Ojan and Spy Side channels

S
e (Ses typically implement ©
memory protection. l

 But: Mere memory access can Memory
change the microarch. state — L1 1]

this affects timing.

* To prevent these timing channels,

OSes can implement time protection:

e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache
(Partitionable)

 Partition what we can HW-SW L1 + other

(hardware-software) 5o_core caches - OS switch
* Flush what we can’t contract (Flushable) fromStoT

“Flush”: Write fixed content; wait up to fixed time.

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Threat scenario:
Trojan and Spy Side channels

S
e (Ses typically implement ©
memory protection. l

 But: Mere memory access can Memory
change the microarch. state —

Today:

How to formalise?

pd ¢ To prevent these timing channels, ;_
OSes can implement time protection:

e.g. [Ge et al. 2019] for seL4 microkernel OS } L2 cache
i (Partitionable)
e Partition what we can HW-SW ! L1 + other |
(hardware-software? on-core caches fOS Sglth-
. * Flush what we can't (Flushable) rom S to

“Flush”: Write fixed content; wait up to fixed time.

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:
trojan and spy

> ©

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:

trojan and spy
=) © r

oS <« HW

Abstract covert state + time to reflect
strategies enabled by HW:
Partition or flush state; pad time.

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:

trojan:;d Zg _ i x__

OS <& HW
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:

trojan:;d Zg _ i x__

OS <& HW
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.

Demonstrating these principles,
we formalised in Isabelle/HOL.:

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:

trojan:;d Zg _ i x__

OS <& HW
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.

Demonstrating these principles,
we formalised in Isabelle/HOL.:

1. OS security model imposing

requirements on relevant parts of OS.
(Intended for seL4, but generic)

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:

trojan:;d Zg _ i x__

OS <& HW
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.

Demonstrating these principles,
we formalised in Isabelle/HOL.:

1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:
trojan and spy
> : “Wx

OS <& HW
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.

Demonstrating these principles,
we formalised in Isabelle/HOL.:

1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if
OS model’s requirements hold.

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:
trojan and spy
> : “Wx

OS <& HW
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.

Demonstrating these principles,
we formalised in Isabelle/HOL.:

1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.

(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if 4. Basic instantiation of OS model

OS model’s requirements hold. exercising dynamic policy.

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time pro ?

Versus threat scenarf®: \, .
trojan and spy N 4
A \ / Aéix_

»@ .
,; 0S & HW
| Abstract covert state + time to reflect 1t Make security property
strategies enabled by HW: J \ precise enough to exclude
_ Partition or flush state; pad time. .,/ %, flows from covert state.

Demonstrating these principles,
we formalised in Isabelle/HOL.:

1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.

(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if 4. Basic instantiation of OS model

OS model’s requirements hold. exercising dynamic policy.

3 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

4

Overt vs covert state

A's memory

B’'s memory

From prior selL4 infoflow proofs
[Murray et al. 2012, 2013]:

“all or nothing” policies

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

- Or -

X

A's memory

B’'s memory

4

Overt vs covert state

A's memory

A’'s microarch.
state

B’'s memory

From prior selL4 infoflow proofs
[Murray et al. 2012, 2013]:

“all or nothing” policies

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

- Or -

A's memory

A’'s microarch.
state

X

B’'s memory

4

Overt vs covert state

A's memory

A’'s microarch.
state

From prior selL4 infoflow proofs

B’'s memory

[Murray et al. 2012, 2013]:

“all or nothing” policies

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A's memory

A’'s microarch.
state

X

B’'s memory

Principle: Need policies

to allow some (overt) flows
while excluding other (covert) ones

Covert state:
Partitionable vs flushable ™

Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

A’s microarch.
state

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

e Strategy for OS:
Partition or flush state; pad time.

A’s microarch.
state

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:

ag e OS & HW
Partitionable vs flushable
Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

e Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

A’s microarch.
state

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:

ag e OS & HW
Partitionable vs flushable
Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

e Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

- State: Everything must be partitionable

or flushable. L ..
A’s cache

partition

Flushable
caches

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:

ag e OS & HW
Partitionable vs flushable
Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

e Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

- State: Everything must be partitionable

or flushable. L ..
A’s cache

partition

Flushable
caches

e e.g. Off-core vs on-core caches.

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:

ag e OS & HW
Partitionable vs flushable
Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

e Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

- State: Everything must be partitionable
or flushable. I

A’s cache
e e.g. Off-core vs on-core caches. oartition
* Interrupt-generating devices
(partitionable; not pictured). Flushable
caches

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:

ag e OS & HW
Partitionable vs flushable
Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

e Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

- State: Everything must be partitionable
or flushable. I

A’s cache
e e.g. Off-core vs on-core caches. oartition
* Interrupt-generating devices
(partitionable; not pictured). Flushable
caches

- Time: HW must give reliable

e WCETs (worst-case execution times)

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:

ag e OS & HW
Partitionable vs flushable
Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

- State: Everything must be partitionable
or flushable. I

A’s cache
e e.g. Off-core vs on-core caches. oartition
* Interrupt-generating devices
(partitionable; not pictured). Flushable
caches

- Time: HW must give reliable

e WCETs (worst-case execution times)
 method of padding.

5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time pro ?

Versus threat scena®: \, .
trojan and spy N 4
A \ / Aéix_

»@ .
,; 0S & HW
| Abstract covert state + time to reflect 1t Make security property
strategies enabled by HW: J \ precise enough to exclude
_ Partition or flush state; pad time. .,/ %, flows from covert state.

Demonstrating these principles,
we formalised in Isabelle/HOL.:

1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.

(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if 4. Basic instantiation of OS model

OS model’s requirements hold. exercising dynamic policy.

9 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS

Versus threat sgerfario: " " | B
AN - —
7> e OS < HW X

Abstract covert state + time to reflect Make security property
strategies enabled by HW: ‘ precise enough to exclude
Partition or flush state; pad time. 1 flows from covert state.

Demonstrating these principles,
we formalised inIsabelle/HOL:

1. OS security model imposing ;.‘ 2. OS security property that is dynamic;
requirements on relevant parts of OS. 1 this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])
. 3. Proof our security property holds if 4. Basic instantiation of OS model
%, OS model’s requirements hold. V. exercising dynamic policy.

s

9 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model o‘w

Transition system

é)
OS entry

\J
/

~

OS

step step

_
User
r

OS
exit

- _J

7 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model 0S & HW

Transition system

é)
OS entry
N
User
step
é)
OS
exit
_ .

State fields

mem :: addr = int

flst :: addr = bool /* Flushable microarch. */

pst :: addr = bool /* Partitionable microarch. */

tm :: nat /* Time */

dom :: domain /* Current domain */

devs :: device set /* Interrupt-generating devices */
event :: {Syscall, Userlinterrupt, TimerInterrupt}
args :: args /* System call arguments */

prot :: prot /* Protection state */

—

7 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

/

Transition system

é)
OS entry
N
User
step
é)
OS
exit
_ .

WPst

flst addr = bool

] addr = bOOI

tm = nar

dom :: domain

devs :: device set

State fields

/* Flushable microarch. */

/* Partltlonable mlcroarch ,*/
/* T|mé */ ’
/* Current domain */

/* Interrupt-generating devices */

event :: {Syscall{.UserInterrupt.; Timerinterrupt}

args :: args
prot :: prot

/* System call arguments */
/* Protection state */

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model o

HW

Microarchitecture

OS security model 0S = HW

Transition system

4) State fields
OS entry
mem > addr = int
_) | , —_—
. flst addr = bool /* Flushable mlcroarch */

' 3 aa’dr = bool /* Partltlonable mlcroarch o

tm et Time

Microarchitecture
dom :: domam __/* Current domaln -/ (Devices

args :: args /*System call arguments */

prot :: prot /* Protection state */
(X) T — L
OS
exit
- W,

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model 0S = HW

Transition system

State fields

' flst wddr = bool /* Flushable microarch. */

s PSt

aa’dr = bool /* Partltlonable mlcroarch o

tm et Time

Microarchitecture
dom domam __/* Current domaln -/ (Devices

% | Modelled to
8| affect all flst +
¥| user’s pst, devs;

args :: args /*System call arguments */

prot :: prot /* Protection state */
4) ‘ — —
OS
exit
- W,

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model 0S = HW

Transition system

4) State fields

TSt - addr = bool /* Flushable microarch. */

S o]

addr = bool /* Partltlonable mlcroarch /-

tm = nat “7 Time */

Microarchitecture
dom :: domain A Current domain */ Devices

Modelled to " ikbdeiibann oo el .

= SR = — Policy-determining state
ff Il :
| Ssers pet, dove: " : device set /* Interrupt- generatlng devices */ _.

choose args;

S e —

4 serlnterru ot ! |merlnterrupt}

.~ args - args /* System call arguments ¥/ \
w1t 1 prot I Protectlon state */ B
(\ - —_— = == —
OS
exit
- W,

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model 0S = HW

Transition system

4) State fields
OS entry
mem : . addr = int
k J , ' ’ - _———
. flst :: addr = bool /* Flushable mlcroarch */

wmPSt 1 addr = bool /* Partltlonable microarch. */

tm :: nat /* Tlme */ _ _
Microarchitecture
. dom :: domain___/* Current domain */ Devices
gﬂf?edc?ﬁfjfEH . e ————— R t— — ——— —__ Policy-determining state
user's pst, devs; " devs device set /* Interru t generatlng dewces *
choose args; . ———— = 2] , SR ‘

. P~ r :: as o /* System céll arguments */ \
w1t 1 prot I Protectlon state */ B
(\ N —_— eSS =
OS
exit
- W,

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model ow

Microarchitecture

Policy-determining state

Transition system

é)
OS entry

- ,

Modelled to
affect all flst +
user’s pst,
choose args;

exit

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model ow

Microarchitecture

Policy-determining state

Transition system

é)
OS entry

- ,

User
step

Modelled to
affect all
user’s

exit

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model ow

Microarchitecture

Policy-determining state

Transition system

(-)

OS entry
K J Where wi < wo

Case 1:
Device interrupt

Handle
poll v e | interrupt
step user’s (WCET Wi)

()
0S Architecture-
exit specific

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Transition system

User
step

7 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems

OS security model

-

_

OS entry

~

J

Modelled to
affect all
user’s

exit

Case 1:
Device interrupt

Where w; < wg

Handle
aciorueer | interrupt
oru PULCIC] el

(WCET wi)
Architecture-

specific

Case 2:
System call

Where wq + we < Wo

m (as for user

(WCET wg) *”

- (as for user

(WCET we) *”

Commit
Mg (

0S-specific
(incl. infoflow
policies)

| R.Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS «& HW

Microarchitecture

Policy-determining state

OS security model ow

Microarchitecture

Policy-determining state

Transition system

- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wqg + We < Wo delivered at (worst-case) To + wo
Partially
WDeCOde. (as for user \ flush pSt (WCET W1)
(WCET wg) *”
Vodellod Handle X Flush fist (WCET W2)
g;i)r %"fs%‘}sz o as for usr interrupt
(WCET wi) Change (WCET ws)
Commit domain ’
AT (as;‘g l;ser
(WCET we) ™" Pad time until
To+wo + W1 +w2 +w3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model ow

Microarchitecture

Policy-determining state

Transition system

- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wg + We < Wo delivered at (worst-case) To + wo

PartlaIIy
Decode . 1,/ yser \ flush pst (WCET wi)
W

(WCET wg) *”

Flush flst (WCET w
Modelled -Handle X (2)

as for user _|nte|w,E;rrU t

User Modelled to

affect all

Step user’s step (WCET Wi)
| Srse woerw
Commlt .
A assgpuser
(WCET we) Pad time until
To +wo +W1 +W2 +WwW3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model ow

Microarchitecture

Policy-determining state

Transition system

- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wg + We < Wo delivered at (worst-case) To + wo

PartlaIIy
Decode . 1,/ yser \ flush pst (WCET wi)
W

(WCET wg) *”

Flush flst (WCET w
Modelled -Handle X (2)

as for user _|nte|w,E;rrU t

User Modelled to

affect all

Step user’s step (WCET Wi)
| Srse woeray
Commlt .
A assgpuser
(WCET we) Pad time until
To +wo +W1 +W2 +WwW3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model ow

Microarchitecture

Policy-determining state

Transition system

- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wg + We < Wo delivered at (worst-case) To + wo

PartlaIIy
Decode . 1,/ yser \ flush pst (WCET wi)
W

(WCET wg) *”

Flush flst (WCET w
Modelled -Handle X (2)

as for user _|nte|w,E;rrU t

User Modelled to

affect all

Step user’s step (WCET Wi)
| Srse woeray
Commlt .
A assgpuser
(WCET we) Pad time until
To +wo +W1 +W2 +WwW3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model ow

Microarchitecture

Policy-determining state

Transition system

- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi< wo Where wqg + wce < wo delivered at (worst-case) To + wo
PartlaIIy
Decode \ flush pst (WCET wi)
WEE= (cad only)
(WCET Wd)
Handle X Flush fist (WCET W2)
Modelled .
gtse%r e o for user (Wﬂw—&:;’ t)
users WI
| Srse woeray
Commit
P
(WCET we) Pad time until
To +wo +W1 +W2 +WwW3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

8

Security proof approach os=Hw

Transition system

é)
OS entry
- W,
User | Modelled to
affect all flst +
Step user’s pst,
ez | choose args;
4)
OS
exit
- W,

OS
step

Case 1:
Device interrupt

Where w; < wg

Handle
aciorueer | interrupt
oru PULCIC] el

(WCET wi)
Architecture-

specific

Microarchitecture

Policy-determining state

Case 2: Case 3:
System call Domain switch

Timer interrupt
Where wq + we < Wo delivered at (worst-case) To + wo

PartlaIIy
Decode \ flush pst (WCET wi)
W= (rcad only)

(WCET Wd)
X Flush fist [(WCET wy)
Change \yoET wa)
Commit domain
A
(WCET we) Pad time until
To+wo +w1+w2+ws
0S-specific Architecture-
(incl. infoflow specific
policies)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach ow

Microarchitecture

Requirements
(In addition to WCETS) Policy-determining state
Transition system
- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wqg + We < Wo delivered at (worst-case) To + wo
PartlaIIy
Decode \ flush pst (WCET wi)
W= (rcad only)
(WCET Wd)
Handle X Flush fist (WCET W2)
Modelled .
l;,tseer gﬂf%dc,?lzldﬂt:t+ . S(t)es as fsc;regser _Interrugtu
oD | Gree s P (WCET wi) Change
—— domain (WCET ws)
Commit
P
(WCET we) Pad time until
To +wWo + W1 +W2 +Ws3
()
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach ow

Microarchitecture

Requirements
(In addition to WCETs) Policy-determining state
Transition system
- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ J Where w; < wo Where wq + we < Wo delivered at (worst-case) To + wo

PartlaIIy
Decode \ flush pst (WCET wi)
W= (road only)

(WCET Wd)
Confidentiality Handle X Flush flst (WCET w2)

Modelled .
l;,tseer gﬂf%dc,?lzldﬂt:t + . S(t)es as fsc;regser _|nterru Qt
B S e P (WCET wi) Change
——— domain (WCET ws)
fidentialit Commit omain
Confi y L
(WCET we) Pad time until
To +wo +W1 +W2 +WwW3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

8 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

Requirements

(In addition to WCETSs)

Transition system

(
OS entry

_

~

J

User [modeledto
affect all flst +
Step user’s pst,

ez | choose args;

Confidentiality

exit

8 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS
step

Case 1:
Device interrupt

Where w; < wg

Confidentiality Handle
yeoees | interrupt
step ' »
(WCET wi)
Architecture-
specific

Case 2:
System call

Where wq + we < Wo

Decode
W= (road only)

Integrity (W CET Wd)

Confidentiality
(relative to

policy)

Commit
=
(WCET wc)

0S-specific
(incl. infoflow
policies)

OS & HW

Microarchitecture

Policy-determining state

Case 3:

Domain switch

Timer interrupt
delivered at (worst-case) To + wo

PartlaIIy
\ flush pst (WCET wi)

X Flush fist [(WCET ws)

Change
j domain (WCET w3)

Pad time until
To+wo +w1 +w2 +ws

Architecture-
specific

Security proof approach

Transition system

(-)

OS entry
& J Where wi < wo

Case 1:
Device interrupt

Confidentiality Handle
l;tseer gﬂf%dcilgalldﬂt:t + S(t)es al\s/l?sc()z Eigr _inte rruEgtA
51D | userspst deve: P (WCET wi)
Confidentiality
0S Architecture-
exit specific
_ Y,

OS & HW

Microarchitecture

Requirements

(In addition to WCETs) Policy-determining state

Case 3:
Domain switch

Timer interrupt
delivered at (worst-case) To + wo

Case 2:
System call

Where wq + we < Wo

Correctness Partlally
Decode \ flush pst (WCET w1)
W= (rcad only)

Integrity (W CET Wd)
Correctnessx Flush flst (WCET w>)
Change
Confidentiality Correctness j domagi]n (WCET ws)
(relative to Commit
policy) e
(WCET We) 0 rectness Pad time until
To+wo +w1+w2+ws
0S-specific Architecture-
(incl. infoflow specific
policies)

8 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach ow

Microarchitecture

Requirements
(In addition to WCETs) Policy-determining state
Transition system
- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
& J Where w; < wo Where wq + we < Wo delivered at (worst-case) To + wo

Correctness Partlally
Decode \ flush pst (WCET w1)
Integrity W= (read only)

(WCET Wd)
Confidentiality Handle CorrectnessX Flush flst {(WCET w2)

User Modelledto. OS s | interru pt
step | users pst, devs; step step WCET w:
e\ choose args; (WI) Correctness Chan ge
= Confidentiality c domain (WCET wa)
Confidentiality (relative to ommlt
(WCET w) Correctness Pad time until
To +wo +W1 +W2 +WwW3

é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific

_ v, policies)

We prove: Confidentiality property (bisimulation) step lemmas

8 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach ow

Microarchitecture

Requirements
(In addition to WCETS) Policy-determining state
Transition system
- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wq + we < wo delivered at (worst-case) To + wo
Correctness Pama”y
Decode \ flush pst (WCET wi)
i o (read only)
Integrity (W CET Wd) y
Confidentiality Handle CorrectnessX Flush flst {(WCET w2)
Modelled .
lSJ tSeepr' g/lf%dctilla:a”d{lt;) S(t)eSp asfor usr interrupt
A choose args: (WCET wi)
W h gs; Confidentiality . t Correctness j ggrar]r;?r? (WCET wa)
Confidentialit (relative to ommi
onriaentiaiity po“cy) | . |
(WCET w) Correctness Pad time until
To+wo +wq +W2 +wW3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

We prove: Confidentiality property (bisimulation) step lemmas

8 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach ow

Microarchitecture

Requirements
(In addition to WCETs) Policy-determining state
Transition system
- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wqg + We < Wo delivered at (worst-case) To + wo

Correctness Partially
Decode flush pst (WCET wi)

Integrity (m ér)ead only)

Confidentiality Handle Correctnesslj [Flush flst (WCET w)
User Modelled to (O al\s/l?gr?ﬂigr interrupt
step | osers st v | step “ ¥ WCET “)
- W choose args; Wi Change
= " Confidentiality c _ Correctness domagijn (WCET ws)
Confidentialit (relative to ommit
onriaentiaiity po“cy) Em . |
(WCET We) 0 rectnes Pad time until
To+wo + w1 +w2 +w3
(-)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

We prove: Confidentiality property (bisimulation) step lemmas

8 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach ow

Microarchitecture

Requirements
(In addition to WCETS) Policy-determining state
Transition system
- ~ Case 1: Case 2: Case 3:
Device interrupt System call Domain switch
OS entry Timer interrupt
\ y Where wi < wo Where wq + we < wo delivered at (worst-case) To + wo
Correctness Pama”y
Decode \ flush pst (WCET wi)
i o (read only)
Integrity (W CET Wd) y
Confidentiality Handle CorrectnessX Flush flst {(WCET w2)
Modelled .
lSJ tSeepr' g/lf%dctilla:a”d{lt;) S(t)eSp asfor usr interrupt
A choose args: (WCET wi)
W h gs; Confidentiality . t Correctness j ggrar]r;?r? (WCET wa)
Confidentialit (relative to ommi
onriaentiaiity po“cy) | . |
(WCET w) Correctness Pad time until
To+wo +wq +W2 +wW3
é)
oS Architecture- 0S-specific Architecture-
exit specific (incl. infoflow specific
_ v, policies)

We prove: Confidentiality property (bisimulation) step lemmas

8 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat seerfario: S
trojan affd spy

OS & HW |
Abstract covert state + time to reflect Make security property
strategies enabled by HW: ‘ precise enough to exclude
Partition or flush state; pad time. 1 flows from covert state.

Demonstrating these principles,
we formalised inIsabelle/HOL:

1. OS security model imposing ;.‘ 2. OS security property that is dynamic;
requirements on relevant parts of OS. 1 this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])
. 3. Proof our security property holds if 4. Basic instantiation of OS model
%, OS model’s requirements hold. S exercising dynamic policy.

s

9 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protectlon’?

Versus threat scenario: .
trojan and spy P
> s 3

0S & HW _
Abstract covert state + time to refle Make security property
strategies enabled by HW: / precise enough to exclude
Partition or flush state; pad time.’ flows from covert state.

Demonstraing these principles,
we formalised in Isabelle/HOL:

1. OS security model imposing | 2. OS security property that is dynamic;
requirements on relevant parts of OS. } this makes it observer relative.

(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if 4. Basic instantiation of OS model

OS model’s requirements hold. exercising dynamic policy.

9 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

OS security property

Recall:

B’'s memory

A ~> B A ~> B
A's memory B’'s memory A's memory
A’'s cache B’s cache A’'s cache
partition partition partition
Flushable Flushable
caches caches

From prior selL4 infoflow proofs

[Murray et al. 2012, 2013]:
“all or nothing” policies

For time protection, need

spatial precision to allow some flows

but exclude others

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security property —¥x

Our infoflow policies: A ~> B

A's memory B’'s memory

A’'s cache
partition

Flushable
caches

For time protection, need
spatial precision to allow some flows
but exclude others

10 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security property —¥x

Our infoflow policies: A ~> B

e Arbitrary spatial precision A's memory | | B's memory

A’s cache
partition

Flushable
caches

For time protection, need
spatial precision to allow some flows
but exclude others

10 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security property —¥x

Our infoflow policies: A ~> B
X
* Arbitrary spatial precision A's memory | -~ | B's memory
* Policy channels specified as ’
state relations: 145l
| A ~~ B ——"
If ~ equates part of A, then A's cache
info flow is allowed from there to B. partition
Flushable
caches

For time protection, need
spatial precision to allow some flows
but exclude others

10 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security property —¥x

Our infoflow policies: A ~> B
X
* Arbitrary spatial precision A's memory | -~ | B's memory
* Policy channels specified as ’
state relations: 145l
| A ~~ B ——"
If ~ equates part of A, then A's cache
info flow is allowed from there to B. partition
Flushable
caches

* Also arbitrary temporal precision

For time protection, need
spatial precision to allow some flows
but exclude others

10 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

OS security property

Our infoflow policies:
* Arbitrary spatial precision

* Policy channels specified as
state relations: 145l
If |A7\j Bl equates part of A, then
info flow is allowed from there to B.

* Also arbitrary temporal precision

* The dynamicity gives us
observer-relative properties

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A ~> B
X
A's memory | | B’s memory
.......... bl
A’s cache
partition
Flushable
caches

For time protection, need

spatial precision to allow some flows

but exclude others

10

~» Also arbitrary temporal precision™,

.._Observer-relative properties .

OS security property

Our infoflow policies:
* Arbitrary spatial precision

* Policy channels specified as
state relations: 145l

A~~B
If | ~ |equates part of A, then

info flow is allowed from there to B.

* The dynamicity gives us

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A ~> B
X
A's memory | | B’s memory
.......... bl
A’s cache
partition
Flushable
caches

For time protection, need

spatial precision to allow some flows

but exclude others

Dynamic policy, observer relativity _é)?

A ~[> B
A's memory B’s memory
A’s cache B’s cache
partition partition
Flushable
caches

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

A ~[> B
Subscribe(d), Broadcast()
A's memory B’'s memory
A’'s cache B’s cache
partition partition
Flushable
caches

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

A ~[> B
Subscribe(d), Broadcast()
, _ A's memory B's memory
1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or
 Broadcast() 1st time after
B called Subscribe(A).
A's cache B’'s cache
partition partition
Flushable
caches

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

A ~[> B
Subscribe(d), Broadcast()
, _ A's memory B's memory

1. Dynamic policy: A~>B ?

Only when A calls

e Subscribe(B), or

 Broadcast() 1st time after

B called Subscribe(A).

Oth : " | A's cache B’'s cache

X STWISE, o channet. partition partition
Flushable
caches

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

, _ A's memory B's memory
1. Dynamic policy: A~>B ?

Only when A calls
e Subscribe(B), or x

 Broadcast() 1st time after
B called Subscribe(A).

_ A's cache B’s cache
¥ Otherwise, no channel. partition oartition
_ Flushable
* Example: caches

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

, _ A's memory |. | B’s memory
1. Dynamic policy: A ~>B ?

Only when A calls

e Subscribe(B), or
 Broadcast() 1st time after ’

B called Subscribe(A).

_ A's cache 4. B’s cache
¥ Otherwise, no channel. partition "o partition
_ Flushable
* Example: caches

1. A calls Subscribe(B)

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

_ _ A's memory B's memory
1. Dynamic policy: A~>B ?

Only when A calls
e Subscribe(B), or x

 Broadcast() 1st time after
B called Subscribe(A).

| A’s cache B’s cache

¥ Otherwise, no channel. partition partition
_ Flushable

¢ Example. caches

1. A calls Subscribe(B)

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

. . A's memory | . | B’s memory
1. Dynamic policy: A~>B ?

Only when A calls

e Subscribe(B), or
 Broadcast() 1st time after ’

B called Subscribe(A). g
ot | 8 | A’s cache " B’scache
) 4 erwise, no channel. bartition ‘..' partition
_ Flushable
e Example: caches

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

_ _ A's memory B's memory
1. Dynamic policy: A~>B ?

Only when A calls
e Subscribe(B), or x

 Broadcast() 1st time after
B called Subscribe(A).

| A’s cache B’s cache

¥ Otherwise, no channel. partition partition
_ Flushable

¢ Example. caches

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

, _ A's memory B's memory
1. Dynamic policy: A~>B ?

Only when A calls
e Subscribe(B), or x

 Broadcast() 1st time after
B called Subscribe(A).

_ A's cache B’s cache

¥ Otherwise, no channel. partition partition
_ Flushable

e Example: caches

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls: 2. Property must be observer relative!

Subscribe(d), Broadcast()

1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:
1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

_ 2. Property must be observer relative!
Subscribe(d), Broadcast()

* |f not, can’t prove the (bisimulation)

_ _ property for unrelated user C!
1. Dynamic policy: A~>B ? (i.e. where A ~/> C, B ~/> C)

Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

_ 2. Property must be observer relative!
Subscribe(d), Broadcast()

* |f not, can’t prove the (bisimulation)

_ _ property for unrelated user C!
1. Dynamic policy: A~>B ? (i.e. where A ~/> C, B ~/> C)

Only when A calls

Successful bisimulation:

As seen
 Subscribe(B), or o »® »® »@ 'C
e Broadcast() 1st time after : s S S
B called Subscribe(A). : : : :
% Otherwise, no channel. ® >® >® >®
t t t” t”
e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

_ 2. Property must be observer relative!
Subscribe(d), Broadcast()

* |f not, can’t prove the (bisimulation)

_ _ property for unrelated user C!
1. Dynamic policy: A~>B ? (i.e. where A ~/> C, B ~/> C)

Only when A calls

Successful bisimulation:

A n
e Subscribe(B), or rosorves @ @ >@— @ Zysece
e Broadcast() 1st time after Jlooks the 2 7 : : S S
B called Subscribe(A). relation : : :
% Otherwise, no channel. ® >® >® >®

t t’ t” t’”

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

_ 2. Property must be observer relative!
Subscribe(d), Broadcast()

* |f not, can’t prove the (bisimulation)

_ _ property for unrelated user C!
1. Dynamic policy: A~>B ? (i.e. where A ~/> C, B ~/> C)

Only when A calls

Successful bisimulation:

A n
e Subscribe(B), or rosorves @ @ >@— @ Zysece
e Broadcast() 1st time after Jlooks the 2 7 : : S S
B called Subscribe(A). relation —= : : :
% Otherwise, no channel. ® >® >® >®

t t’ t” t’”

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

2. Property must be observer relative!

* |f not, can’t prove the (bisimulation)

property for unrelated user C!
(i.,e. where A ~/> C, B ~/> C)

Successful bisimulation:

As seen
by C
Preserves . >.) >.o ” >’ 1)
“looks the = ° . S . S . S
sameto C” .
relation : . . .
t t’ t” t’”
Problematic case: A
s seen
A~/>B A~>B A~/>B
Adoescall @—>——>@—@ by €
Subscribe(B) S g e . s” .. . g e,
"*-. . No slch states
A doesn'’t call A~>B
Subscribe(B) @ A K
t t! t” tl”

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

2. Property must be observer relative!

* |f not, can’t prove the (bisimulation)

property for unrelated user C!
(i.,e. where A ~/> C, B ~/> C)

Problematic case:

As seen
A~/>B A~>B A~/>B
Adoes call @—>@——>@——>@ by C

Subscribe(B) s g "L, g .. . s ..

. s "°..Noéhchstates
Adoesn'tcall g = MY S .
Subscribe(B) @ X X

t t’ t” t”’

e Solution: C’s property must treat states
(in the state machine) as observable
only whenever

e (Cisrunning, or
e When d is running, d ~> C.

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protectlon’?

Versus threat scenario: o
trojan and spy P
+e e 3

0S & HW w
Abstract covert state + time to refle Make security property
strategies enabled by HW: precise enough to exclude

Partition or flush state; pad time' flows from covert state.

Demonstr Ing these principles,
we formaliged in Isabelle/HOL:

1. OS security model imposing ' 2. OS security property that is dynamic;
requirements on relevant parts of OS. } this makes it observer relative.

(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if % 4. Basic instantiation of OS model

OS model’s requirements hold. *xercising dynamic policy.

12 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

Versus threat scenario:
troj d
rolan-a; Zg) . Thank youl!
OS <& HW X Q&A
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.
Demonstr._ating_these principles, Paper: https: //do . ora/ us
we formalised in Isabelle/HOL.: Artifact: https://doi.org/jzwk
1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])
3. Proof our security property holds if 4. Basic instantiation of OS model
OS model’s requirements hold. exercising dynamic policy.

12 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

https://doi.org/jzwj
https://doi.org/jzwk

