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From prior seL4 infoflow proofs

[Murray et al. 2012, 2013]: 

“all or nothing” policies

A B

B’s memoryA’s memory

~>
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4

From prior seL4 infoflow proofs

[Murray et al. 2012, 2013]: 

“all or nothing” policies
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~>

A’s microarch. 
state

A’s microarch. 
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A B

B’s memory

A’s microarch. 
state

A’s memory

~>

Principle: Need policies 
to allow some (overt) flows 

while excluding other (covert) ones
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Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No 

channels!
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How to formalise an OS 
enforces time protection?

6

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

3. Proof our security property holds if 
OS model’s requirements hold.

4.  Basic instantiation of OS model 
exercising dynamic policy.

1. OS security model imposing 
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic; 
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012]) 

Make security property 
precise enough to exclude 

flows from covert state.

Abstract covert state + time to reflect 
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No 

channels!
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OS entry
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step

OS 
step
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No 
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mem :: addr ⇒ int 
flst :: addr ⇒ bool  /* Flushable microarch. */
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OS 🤝 HW
No 

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems  |  R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser



OS security model

7

OS entry

OS 
exit

User 
step

OS 
step

Transition system

State fields

mem :: addr ⇒ int 
flst :: addr ⇒ bool  /* Flushable microarch. */
pst :: addr ⇒ bool  /* Partitionable microarch. */
tm :: nat                 /* Time */
dom :: domain        /* Current domain */
devs :: device set   /* Interrupt-generating devices */
event :: {Syscall, UserInterrupt, TimerInterrupt}
args :: args            /* System call arguments */
prot :: prot             /* Protection state */

 

OS 🤝 HW
No 

channels!

Microarchitecture
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How to formalise an OS 
enforces time protection?

9

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

1. OS security model imposing 
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

3. Proof our security property holds if 
OS model’s requirements hold.

4.  Basic instantiation of OS model 
exercising dynamic policy.

2. OS security property that is dynamic; 
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012]) 

Make security property 
precise enough to exclude 

flows from covert state.

Abstract covert state + time to reflect 
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No 

channels!
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From prior seL4 infoflow proofs

[Murray et al. 2012, 2013]: 

“all or nothing” policies

A B

B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~>
Recall:

10

A B

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~>

For time protection, need 
spatial precision to allow some flows 

but exclude others

OS security property
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A B

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~>

For time protection, need 
spatial precision to allow some flows 

but exclude others

Our infoflow policies:

OS security property
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For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

OS security property
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For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as 
state relations: 
 
If                equates part of A, then 
info flow is allowed from there to B.

OS security property

|A B|⇠

s
|A B|⇠ t
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For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as 
state relations: 
 
If                equates part of A, then 
info flow is allowed from there to B.

• Also arbitrary temporal precision

OS security property

|A B|⇠

s
|A B|⇠ t
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caches

A’s cache 
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as 
state relations: 
 
If                equates part of A, then 
info flow is allowed from there to B.

• Also arbitrary temporal precision

• The dynamicity gives us 
observer-relative properties

OS security property

|A B|⇠

s
|A B|⇠ t
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For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as 
state relations: 
 
If                equates part of A, then 
info flow is allowed from there to B.

• Also arbitrary temporal precision

• The dynamicity gives us 
observer-relative properties

OS security property

?

|A B|⇠

s
|A B|⇠ t

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems  |  R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser



A B

B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>

11

Dynamic policy, observer relativity
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A B

B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

Dynamic policy, observer relativity
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A B

B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).

Dynamic policy, observer relativity
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

Dynamic policy, observer relativity
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B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

Dynamic policy, observer relativity
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B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

Dynamic policy, observer relativity

~>
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A B

B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

Dynamic policy, observer relativity

Flushable 
caches

B’s cache 
partition

B’s memory

A’s cache 
partition

A’s memory

</~
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A’s cache 
partition

A’s memory
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

Flushable 
caches

B’s cache 
partition

B’s memory

A’s cache 
partition

A’s memory

</~<~
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1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity
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partition
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity
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A B

B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!
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A B

B’s cache 
partition

B’s memory

Flushable 
caches

A’s cache 
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation) 
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)
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Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation) 
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity
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• If not, can’t prove the (bisimulation) 
property for unrelated user C! 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by C
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“looks the 
same to C” 

relation
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation) 
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems  |  R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

s’ s’’ s’’’

t’ t’’ t’’’t

s

Successful bisimulation: As seen 
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relation
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partition

B’s memory

Flushable 
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A’s cache 
partition

A’s memory

~/>
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation) 
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

A ~/> B A ~> B A ~/> B
A does call 

Subscribe(B)

A doesn’t call 
Subscribe(B)

A ~/> B

s’ s’’ s’’’

t’ t’’ t’’’

As seen 
by C

t

s

No such states

Problematic case:
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Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation) 
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

• Solution: C’s property must treat states 
(in the state machine) as observable 
only whenever
• C is running, or
• When d is running, d ~> C.

A ~/> B A ~> B A ~/> B
A does call 

Subscribe(B)

A doesn’t call 
Subscribe(B)

A ~/> B

s’ s’’ s’’’

t’ t’’ t’’’

As seen 
by C

t

s

No such states

Problematic case:
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How to formalise an OS 
enforces time protection?

12

3. Proof our security property holds if 
OS model’s requirements hold.

4.  Basic instantiation of OS model 
exercising dynamic policy.

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

1. OS security model imposing 
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic; 
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012]) 

Make security property 
precise enough to exclude 

flows from covert state.

Abstract covert state + time to reflect 
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No 

channels!
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How to formalise an OS 
enforces time protection?

12

3. Proof our security property holds if 
OS model’s requirements hold.

4.  Basic instantiation of OS model 
exercising dynamic policy.

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy Thank you! 

Q & A

1. OS security model imposing 
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic; 
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012]) 

Make security property 
precise enough to exclude 

flows from covert state.

Abstract covert state + time to reflect 
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No 

channels!
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