
Formalising the Prevention of
Microarchitectural Timing

Channels by Operating Systems

Robert Sison1,2, Scott Buckley2, 
Toby Murray1, Gerwin Klein3,2, and Gernot Heiser2

Formal Methods (FM), 7 March 2023

1 The University of 
Melbourne, Australia

2 UNSW Sydney,
Australia

3 Proofcraft,
Sydney, Australia

Paper: https://doi.org/jzwj  
Artifact: https://doi.org/jzwk

https://doi.org/jzwj
https://doi.org/jzwk

Formalising the Prevention of
Microarchitectural Timing

Channels by Operating Systems

Robert Sison1,2, Scott Buckley2, 
Toby Murray1, Gerwin Klein3,2, and Gernot Heiser2

Formal Methods (FM), 7 March 2023

1 The University of 
Melbourne, Australia

2 UNSW Sydney,
Australia

3 Proofcraft,
Sydney, Australia

Paper: https://doi.org/jzwj  
Artifact: https://doi.org/jzwk

https://doi.org/jzwj
https://doi.org/jzwk

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

ST

Memory

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

ST

Memory

Covert channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

ST

Memory

V?

——— ?Victim/
Covert channels

+ 
Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

ST

Memory

V?

——— ?Victim/
Covert channels

+ 
Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

ST

Memory

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

ST

Memory

• OSes typically implement 
memory protection.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

Cache

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

Cache

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

Cache

Slow…

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

Cache

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

Cache

Fast!

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

Cache

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

Cache

Slow…
S knows 

T accessed 
that part 

of memory!

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

L2 cache 
(Partitionable)

L1 + other 
on-core caches 

(Flushable)

ST

Memory

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

• To prevent these timing channels, 
OSes can implement time protection: 
e.g. [Ge et al. 2019] for seL4 microkernel OS

• Partition what we can

• Flush what we can’t

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

L2 cache 
(Partitionable)

L1 + other 
on-core caches 

(Flushable)

ST

Memory

T is running

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

• To prevent these timing channels, 
OSes can implement time protection: 
e.g. [Ge et al. 2019] for seL4 microkernel OS

• Partition what we can

• Flush what we can’t

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

L2 cache 
(Partitionable)

L1 + other 
on-core caches 

(Flushable)

ST

Memory

OS switch 
from T to S

“Flush”: Write fixed content; wait up to fixed time.

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

• To prevent these timing channels, 
OSes can implement time protection: 
e.g. [Ge et al. 2019] for seL4 microkernel OS

• Partition what we can

• Flush what we can’t

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

L2 cache 
(Partitionable)

L1 + other 
on-core caches 

(Flushable)

ST

Memory

S is running

“Flush”: Write fixed content; wait up to fixed time.

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

• To prevent these timing channels, 
OSes can implement time protection: 
e.g. [Ge et al. 2019] for seL4 microkernel OS

• Partition what we can

• Flush what we can’t

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

L2 cache 
(Partitionable)

L1 + other 
on-core caches 

(Flushable)

ST

Memory

OS switch 
from S to T

“Flush”: Write fixed content; wait up to fixed time.

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

• To prevent these timing channels, 
OSes can implement time protection: 
e.g. [Ge et al. 2019] for seL4 microkernel OS

• Partition what we can

• Flush what we can’t

Covert channels
+ 

Side channels

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

L2 cache 
(Partitionable)

L1 + other 
on-core caches 

(Flushable)

ST

Memory

OS switch 
from S to T

“Flush”: Write fixed content; wait up to fixed time.

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

• To prevent these timing channels, 
OSes can implement time protection: 
e.g. [Ge et al. 2019] for seL4 microkernel OS

• Partition what we can

• Flush what we can’t

Covert channels
+ 

Side channels

HW-SW 
(hardware-software)  

contract

Threat scenario:
Trojan and spy

2 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Memory

L2 cache 
(Partitionable)

L1 + other 
on-core caches 

(Flushable)

ST

Memory

OS switch 
from S to T

“Flush”: Write fixed content; wait up to fixed time.

• OSes typically implement 
memory protection.

• But: Mere memory access can 
change the microarch. state — 
this affects timing.

• To prevent these timing channels, 
OSes can implement time protection: 
e.g. [Ge et al. 2019] for seL4 microkernel OS

• Partition what we can

• Flush what we can’t

Today: 
How to formalise?

Covert channels
+ 

Side channels

HW-SW 
(hardware-software)  

contract

3

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

3. Proof our security property holds if
OS model’s requirements hold.

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

3. Proof our security property holds if
OS model’s requirements hold.

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

4. Basic instantiation of OS model
exercising dynamic policy.

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

3

3. Proof our security property holds if
OS model’s requirements hold.

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

4. Basic instantiation of OS model
exercising dynamic policy.

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

How to formalise an OS
enforces time protection?

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s memoryA’s memory

~/>

- or -

Overt vs covert state

4

From prior seL4 infoflow proofs

[Murray et al. 2012, 2013]: 

“all or nothing” policies

A B

B’s memoryA’s memory

~>

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s memoryA’s memory

~/>

- or -

Overt vs covert state

4

From prior seL4 infoflow proofs

[Murray et al. 2012, 2013]: 

“all or nothing” policies

A B

B’s memoryA’s memory

~>

A’s microarch.
state

A’s microarch.
state

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Overt vs covert state

4

From prior seL4 infoflow proofs

[Murray et al. 2012, 2013]: 

“all or nothing” policies

A B

B’s memoryA’s memory

~>

A’s microarch.
state

A’s microarch.
state

A B

B’s memory

A’s microarch.
state

A’s memory

~>

Principle: Need policies 
to allow some (overt) flows 

while excluding other (covert) ones

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

A’s microarch.
state

A’s memory

~>

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

A’s microarch.
state

A’s memory

~>

• Strategy for OS: 
Partition or flush state; pad time.

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

A’s microarch.
state

A’s memory

~>

• Strategy for OS: 
Partition or flush state; pad time.

• Relies on HW-SW contract:

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>

• Strategy for OS: 
Partition or flush state; pad time.

• Relies on HW-SW contract:
- State: Everything must be partitionable

or flushable.

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>

• Strategy for OS: 
Partition or flush state; pad time.

• Relies on HW-SW contract:
- State: Everything must be partitionable

or flushable.
• e.g. Off-core vs on-core caches.

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>

• Strategy for OS: 
Partition or flush state; pad time.

• Relies on HW-SW contract:
- State: Everything must be partitionable

or flushable.
• e.g. Off-core vs on-core caches.
• Interrupt-generating devices 

(partitionable; not pictured).

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>

• Strategy for OS: 
Partition or flush state; pad time.

• Relies on HW-SW contract:
- State: Everything must be partitionable

or flushable.
• e.g. Off-core vs on-core caches.
• Interrupt-generating devices 

(partitionable; not pictured).

- Time: HW must give reliable
• WCETs (worst-case execution times)

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Covert state:
Partitionable vs flushable

5

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>

• Strategy for OS: 
Partition or flush state; pad time.

• Relies on HW-SW contract:
- State: Everything must be partitionable

or flushable.
• e.g. Off-core vs on-core caches.
• Interrupt-generating devices 

(partitionable; not pictured).

- Time: HW must give reliable
• WCETs (worst-case execution times)
• method of padding.

Principle: 
Model channels as state elements 

by their elimination strategy 
as per HW-SW contract

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

6

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

3. Proof our security property holds if
OS model’s requirements hold.

4. Basic instantiation of OS model
exercising dynamic policy.

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

6

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

3. Proof our security property holds if
OS model’s requirements hold.

4. Basic instantiation of OS model
exercising dynamic policy.

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

State fields

mem :: addr ⇒ int 
flst :: addr ⇒ bool /* Flushable microarch. */
pst :: addr ⇒ bool /* Partitionable microarch. */
tm :: nat /* Time */
dom :: domain /* Current domain */
devs :: device set /* Interrupt-generating devices */
event :: {Syscall, UserInterrupt, TimerInterrupt}
args :: args /* System call arguments */
prot :: prot /* Protection state */

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

State fields

mem :: addr ⇒ int 
flst :: addr ⇒ bool /* Flushable microarch. */
pst :: addr ⇒ bool /* Partitionable microarch. */
tm :: nat /* Time */
dom :: domain /* Current domain */
devs :: device set /* Interrupt-generating devices */
event :: {Syscall, UserInterrupt, TimerInterrupt}
args :: args /* System call arguments */
prot :: prot /* Protection state */

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

State fields

mem :: addr ⇒ int 
flst :: addr ⇒ bool /* Flushable microarch. */
pst :: addr ⇒ bool /* Partitionable microarch. */
tm :: nat /* Time */
dom :: domain /* Current domain */
devs :: device set /* Interrupt-generating devices */
event :: {Syscall, UserInterrupt, TimerInterrupt}
args :: args /* System call arguments */
prot :: prot /* Protection state */

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

State fields

mem :: addr ⇒ int 
flst :: addr ⇒ bool /* Flushable microarch. */
pst :: addr ⇒ bool /* Partitionable microarch. */
tm :: nat /* Time */
dom :: domain /* Current domain */
devs :: device set /* Interrupt-generating devices */
event :: {Syscall, UserInterrupt, TimerInterrupt}
args :: args /* System call arguments */
prot :: prot /* Protection state */

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

State fields

mem :: addr ⇒ int 
flst :: addr ⇒ bool /* Flushable microarch. */
pst :: addr ⇒ bool /* Partitionable microarch. */
tm :: nat /* Time */
dom :: domain /* Current domain */
devs :: device set /* Interrupt-generating devices */
event :: {Syscall, UserInterrupt, TimerInterrupt}
args :: args /* System call arguments */
prot :: prot /* Protection state */

choose args;

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

State fields

mem :: addr ⇒ int 
flst :: addr ⇒ bool /* Flushable microarch. */
pst :: addr ⇒ bool /* Partitionable microarch. */
tm :: nat /* Time */
dom :: domain /* Current domain */
devs :: device set /* Interrupt-generating devices */
event :: {Syscall, UserInterrupt, TimerInterrupt}
args :: args /* System call arguments */
prot :: prot /* Protection state */

time advances
choose args;

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

time advances
choose args;

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system

time advances
choose args;

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system
Case 1: 

Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled
as for user

step

time advances
choose args;

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system
Case 2: 

System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled
as for user

step

time advances
choose args;

(as for user
step)

(as for user
step)

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled
as for user

step

time advances
choose args;

(as for user
step)

(as for user
step)

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled
as for user

step

time advances
choose args;

(as for user
step)

(as for user
step)

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled
as for user

step

time advances
choose args;

(as for user
step)

(as for user
step)

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled
as for user

step

time advances
choose args;

(as for user
step)

(as for user
step)

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advances

OS security model

7

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled
as for user

step

time advances
choose args;

(read only)

 

OS 🤝 HW
No

channels!

Microarchitecture
Devices
Policy-determining state
Time

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Requirements
(In addition to WCETs)

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Requirements
(In addition to WCETs)

Confidentiality

Confidentiality

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Integrity

Confidentiality 
(relative to 

policy)

Requirements
(In addition to WCETs)

Confidentiality

Confidentiality

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Integrity

Confidentiality 
(relative to 

policy)

Correctness

Correctness

Correctness

Correctness

Requirements
(In addition to WCETs)

Confidentiality

Confidentiality

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Integrity

Confidentiality 
(relative to 

policy)

Correctness

Correctness

Correctness

Correctness

Requirements
(In addition to WCETs)

We prove: Confidentiality property (bisimulation) step lemmas

Confidentiality

Confidentiality

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Integrity

Confidentiality 
(relative to 

policy)

Correctness

Correctness

Correctness

Correctness

Requirements
(In addition to WCETs)

We prove: Confidentiality property (bisimulation) step lemmas

Confidentiality

Confidentiality

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Integrity

Confidentiality 
(relative to 

policy)

Correctness

Correctness

Correctness

Correctness

Requirements
(In addition to WCETs)

We prove: Confidentiality property (bisimulation) step lemmas

Confidentiality

Confidentiality

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

Security proof approach

8

OS entry

OS
exit

User
step

OS
step

Transition system
Case 3: 

Domain switch

Pad time until
T0 + w0 + w1 + w2 + w3

Change
domain

Flush flst

Partially
flush pst

Timer interrupt
delivered at (worst-case) T0 + w0

(WCET w1)

(WCET w2)

(WCET w3)

Architecture-
specific

Case 2: 
System call

Decode
(WCET wd)

Commit
(WCET wc)

Where wd + wc ≤ w0

OS-specific
(incl. infoflow

policies)

Case 1: 
Device interrupt

Handle
interrupt

(WCET wi)

Where wi ≤ w0

Architecture-
specific

Modelled to
affect all flst +
user’s pst, devs;
choose args;
time advancestime advances
choose args;

(read only)

Microarchitecture
Devices
Policy-determining state
Time

Modelled
as for user

step

Integrity

Confidentiality 
(relative to 

policy)

Correctness

Correctness

Correctness

Correctness

Requirements
(In addition to WCETs)

We prove: Confidentiality property (bisimulation) step lemmas

Confidentiality

Confidentiality

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

9

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

3. Proof our security property holds if
OS model’s requirements hold.

4. Basic instantiation of OS model
exercising dynamic policy.

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

9

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

3. Proof our security property holds if
OS model’s requirements hold.

4. Basic instantiation of OS model
exercising dynamic policy.

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

From prior seL4 infoflow proofs

[Murray et al. 2012, 2013]: 

“all or nothing” policies

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>
Recall:

10

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>

For time protection, need 
spatial precision to allow some flows 

but exclude others

OS security property

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>

For time protection, need 
spatial precision to allow some flows 

but exclude others

Our infoflow policies:

OS security property

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

OS security property

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as
state relations: 
 
If equates part of A, then
info flow is allowed from there to B.

OS security property

|A B|⇠

s
|A B|⇠ t

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as
state relations: 
 
If equates part of A, then
info flow is allowed from there to B.

• Also arbitrary temporal precision

OS security property

|A B|⇠

s
|A B|⇠ t

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as
state relations: 
 
If equates part of A, then
info flow is allowed from there to B.

• Also arbitrary temporal precision

• The dynamicity gives us
observer-relative properties

OS security property

|A B|⇠

s
|A B|⇠ t

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

10

For time protection, need 
spatial precision to allow some flows 

but exclude others

A B

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~>Our infoflow policies:

• Arbitrary spatial precision

• Policy channels specified as
state relations: 
 
If equates part of A, then
info flow is allowed from there to B.

• Also arbitrary temporal precision

• The dynamicity gives us
observer-relative properties

OS security property

?

|A B|⇠

s
|A B|⇠ t

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Dynamic policy, observer relativity

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

Dynamic policy, observer relativity

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).

Dynamic policy, observer relativity

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

Dynamic policy, observer relativity

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

Dynamic policy, observer relativity

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

Dynamic policy, observer relativity

~>

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

Dynamic policy, observer relativity

Flushable
caches

B’s cache
partition

B’s memory

A’s cache
partition

A’s memory

</~

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

Flushable
caches

B’s cache
partition

B’s memory

A’s cache
partition

A’s memory

</~<~

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

Flushable
caches

B’s cache
partition

B’s memory

A’s cache
partition

A’s memory

</~

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation)
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation)
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

s’ s’’ s’’’

t’ t’’ t’’’t

s

Successful bisimulation: As seen
by C

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation)
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

s’ s’’ s’’’

t’ t’’ t’’’t

s

Successful bisimulation: As seen
by C

Preserves
“looks the
same to C”

relation

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation)
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

s’ s’’ s’’’

t’ t’’ t’’’t

s

Successful bisimulation: As seen
by C

etc...

Preserves
“looks the
same to C”

relation

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation)
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

A ~/> B A ~> B A ~/> B
A does call

Subscribe(B)

A doesn’t call
Subscribe(B)

A ~/> B

s’ s’’ s’’’

t’ t’’ t’’’

As seen
by C

t

s

No such states

Problematic case:

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

s’ s’’ s’’’

t’ t’’ t’’’t

s

Successful bisimulation: As seen
by C

etc...

Preserves
“looks the
same to C”

relation

A B

B’s cache
partition

B’s memory

Flushable
caches

A’s cache
partition

A’s memory

~/>

11

Two basic system calls: 
Subscribe(d), Broadcast() 

1. Dynamic policy: A ~> B ?
Only when A calls
• Subscribe(B), or
• Broadcast() 1st time after 

B called Subscribe(A).
Otherwise, no channel.

• Example:

1. A calls Subscribe(B)

2. B calls Broadcast()

Dynamic policy, observer relativity

2. Property must be observer relative!

• If not, can’t prove the (bisimulation)
property for unrelated user C! 
(i.e. where A ~/> C, B ~/> C)

• Solution: C’s property must treat states
(in the state machine) as observable
only whenever
• C is running, or
• When d is running, d ~> C.

A ~/> B A ~> B A ~/> B
A does call

Subscribe(B)

A doesn’t call
Subscribe(B)

A ~/> B

s’ s’’ s’’’

t’ t’’ t’’’

As seen
by C

t

s

No such states

Problematic case:

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

12

3. Proof our security property holds if
OS model’s requirements hold.

4. Basic instantiation of OS model
exercising dynamic policy.

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

How to formalise an OS
enforces time protection?

12

3. Proof our security property holds if
OS model’s requirements hold.

4. Basic instantiation of OS model
exercising dynamic policy.

Demonstrating these principles, 
we formalised in Isabelle/HOL:

Versus threat scenario: 
trojan and spy Thank you! 

Q & A

1. OS security model imposing
requirements on relevant parts of OS. 
(Intended for seL4, but generic)

2. OS security property that is dynamic;
this makes it observer relative. 
(Improving on seL4’s of [Murray et al. 2012])

Make security property
precise enough to exclude

flows from covert state.

Abstract covert state + time to reflect
strategies enabled by HW: 

Partition or flush state; pad time.

 

OS 🤝 HW
No

channels!

Paper: https://doi.org/jzwj  
Artifact: https://doi.org/jzwk

Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser

https://doi.org/jzwj
https://doi.org/jzwk

