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this affects timing.

* To prevent these timing channels,

OSes can implement time protection:
e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache
(Partitionable)
e Partition what we can L1 + other
on-core caches -
* Flush what we can’t (Flushable)
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* To prevent these timing channels,

OSes can implement time protection:
e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache |:I:.
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“Flush”: Write fixed content; wait up to fixed time.
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change the microarch. state — L1 1]

this affects timing.

* To prevent these timing channels,

OSes can implement time protection:

e.g. [Ge et al. 2019] for seL4 microkernel OS L2 cache
(Partitionable)

 Partition what we can HW-SW L1 + other

(hardware-software) 5o_core caches - OS switch
* Flush what we can’t contract (Flushable) fromStoT

“Flush”: Write fixed content; wait up to fixed time.
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How to formalise?

pd ¢ To prevent these timing channels, ;_
OSes can implement time protection:

e.g. [Ge et al. 2019] for seL4 microkernel OS } L2 cache
i (Partitionable)
e Partition what we can HW-SW ! L1 + other |
(hardware-software? on-core caches fOS Sglth-
. * Flush what we can't (Flushable) rom S to

“Flush”: Write fixed content; wait up to fixed time.
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How to formalise an OS
enforces time protection?

Versus threat scenario:
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we formalised in Isabelle/HOL.:
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1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if
OS model’s requirements hold.
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Principle: Need policies

to allow some (overt) flows
while excluding other (covert) ones



Covert state:
Partitionable vs flushable ™

Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

A’s microarch.
state
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A’s microarch.
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Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

e Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

- State: Everything must be partitionable

or flushable. L ..
A’s cache

partition

Flushable
caches

e e.g. Off-core vs on-core caches.
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5 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser



Covert state:

ag e OS & HW
Partitionable vs flushable
Principle:
Model channels as state elements
by their elimination strategy A ~> B
as per HW-SW contrget =~ .
A's memory B’'s memory

Strategy for OS:
Partition or flush state; pad time.

e Relies on HW-SW contract:

- State: Everything must be partitionable
or flushable. I

A’s cache
e e.g. Off-core vs on-core caches. oartition
* Interrupt-generating devices
(partitionable; not pictured). Flushable
caches

- Time: HW must give reliable

e WCETs (worst-case execution times)
 method of padding.
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How to formalise an OS

Versus threat sgerfario: " " | B
AN - —
7> e OS < HW X

Abstract covert state + time to reflect Make security property
strategies enabled by HW: ‘ precise enough to exclude
Partition or flush state; pad time. 1 flows from covert state.

Demonstrating these principles,
we formalised inIsabelle/HOL:

1. OS security model imposing ;.‘ 2. OS security property that is dynamic;
requirements on relevant parts of OS. 1 this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])
. 3. Proof our security property holds if 4. Basic instantiation of OS model
%, OS model’s requirements hold. V. exercising dynamic policy.

s
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OS security model o‘w

Transition system

é )
OS entry

\J
/

~

OS

step step

\_
User
r

OS
exit

- _J
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OS security model 0S & HW

Transition system

é )
OS entry
N
User
step
é )
OS
exit
\_ .

State fields

mem :: addr = int

flst :: addr = bool /* Flushable microarch. */

pst :: addr = bool /* Partitionable microarch. */

tm :: nat /* Time */

dom :: domain /* Current domain */

devs :: device set /* Interrupt-generating devices */
event :: {Syscall, Userlinterrupt, TimerInterrupt}
args :: args /* System call arguments */

prot :: prot /* Protection state */

—
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/

Transition system

é )
OS entry
N
User
step
é )
OS
exit
\_ .

WPst

flst addr = bool

] addr = bOOI

tm = nar

dom :: domain

devs :: device set

State fields

/* Flushable microarch. */

/* Partltlonable mlcroarch ,*/
/* T|mé */ ’
/* Current domain */

/* Interrupt-generating devices */

event :: {Syscall{.UserInterrupt.; Timerinterrupt}

args :: args
prot :: prot

/* System call arguments */
/* Protection state */
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HW

Microarchitecture



OS security model 0S = HW

Transition system

4 ) State fields
OS entry
mem > addr = int
\_ ) | , —_—
. flst addr = bool /* Flushable mlcroarch */

' 3 aa’dr = bool /* Partltlonable mlcroarch o

tm et Time

Microarchitecture
dom :: domam __/* Current domaln -/ ( Devices

args :: args /*System call arguments */

prot :: prot /* Protection state */
( X ) T — L
OS
exit
- W,
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OS security model 0S = HW

Transition system

State fields

' flst wddr = bool /* Flushable microarch. */

s PSt

aa’dr = bool /* Partltlonable mlcroarch o

tm et Time

Microarchitecture
dom domam __/* Current domaln -/ ( Devices

% | Modelled to
8| affect all flst +
¥| user’s pst, devs;

args :: args /*System call arguments */

prot :: prot /* Protection state */
4 ) ‘ — —
OS
exit
- W,
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OS security model 0S = HW

Transition system

4 ) State fields

TSt - addr = bool /* Flushable microarch. */

S o]

addr = bool /* Partltlonable mlcroarch /-

tm = nat “7 Time */

Microarchitecture
dom :: domain A Current domain */ Devices

Modelled to " ikbdeiibann oo el .

= SR = — Policy-determining state
ff Il :
| Ssers pet, dove: " : device set /* Interrupt- generatlng devices */ _.

choose args;

S e —

4 serlnterru ot ! |merlnterrupt}

.~ args - args  /* System call arguments ¥/ \
w1t 1 prot I Protectlon state */ B
( \ - —_— = == —
OS
exit
- W,
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OS security model 0S = HW

Transition system

4 ) State fields
OS entry
mem : . addr = int
k J , ' ’ - _———
. flst :: addr = bool /* Flushable mlcroarch */

wmPSt 1 addr = bool /* Partltlonable microarch. */

tm :: nat /* Tlme */ _ _
Microarchitecture
. dom :: domain___/* Current domain */ Devices
gﬂf?edc?ﬁfjfEH . e ————— R t— — ——— —__ Policy-determining state
user's pst, devs; " devs device set /* Interru t generatlng dewces *
choose args; . ———— = 2 ] , SR ‘

. P~ r :: as o /* System céll arguments */ \
w1t 1 prot I Protectlon state */ B
( \ N —_— eSS =
OS
exit
- W,
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OS security model ow

Microarchitecture

Policy-determining state

Transition system

é )
OS entry

- ,

Modelled to
affect all flst +
user’s pst,
choose args;

exit
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How to formalise an OS
enforces time protection?

Versus threat seerfario: S
trojan affd spy

OS & HW |
Abstract covert state + time to reflect Make security property
strategies enabled by HW: ‘ precise enough to exclude
Partition or flush state; pad time. 1 flows from covert state.

Demonstrating these principles,
we formalised inIsabelle/HOL:

1. OS security model imposing ;.‘ 2. OS security property that is dynamic;
requirements on relevant parts of OS. 1 this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])
. 3. Proof our security property holds if 4. Basic instantiation of OS model
%, OS model’s requirements hold. S exercising dynamic policy.

s
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Abstract covert state + time to refle Make security property
strategies enabled by HW:  / precise enough to exclude
Partition or flush state; pad time.’ flows from covert state.

Demonstraing these principles,
we formalised in Isabelle/HOL:

1. OS security model imposing | 2. OS security property that is dynamic;
requirements on relevant parts of OS. } this makes it observer relative.

(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if 4. Basic instantiation of OS model

OS model’s requirements hold. exercising dynamic policy.
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OS security property

Recall:

B’'s memory

A ~> B A ~> B
A's memory B’'s memory A's memory
A’'s cache B’s cache A’'s cache
partition partition partition
Flushable Flushable
caches caches

From prior selL4 infoflow proofs

[Murray et al. 2012, 2013]:
“all or nothing” policies

For time protection, need

spatial precision to allow some flows

but exclude others
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spatial precision to allow some flows
but exclude others
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OS security property  —¥x

Our infoflow policies: A ~> B

e Arbitrary spatial precision A's memory | | B's memory

A’s cache
partition

Flushable
caches

For time protection, need
spatial precision to allow some flows
but exclude others
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OS security property  —¥x

Our infoflow policies: A ~> B
X
* Arbitrary spatial precision A's memory | -~ | B's memory
* Policy channels specified as ’
state relations: 145l
| A ~~ B ——"
If ~  equates part of A, then A's cache
info flow is allowed from there to B. partition
Flushable
caches

For time protection, need
spatial precision to allow some flows
but exclude others
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* Policy channels specified as ’
state relations: 145l
| A ~~ B ——"
If ~  equates part of A, then A's cache
info flow is allowed from there to B. partition
Flushable
caches

* Also arbitrary temporal precision

For time protection, need
spatial precision to allow some flows
but exclude others
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OS security property

Our infoflow policies:
* Arbitrary spatial precision

* Policy channels specified as
state relations: 145l
If |A7\j Bl equates part of A, then
info flow is allowed from there to B.

* Also arbitrary temporal precision

* The dynamicity gives us
observer-relative properties
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~» Also arbitrary temporal precision™,

.._Observer-relative properties .

OS security property

Our infoflow policies:
* Arbitrary spatial precision

* Policy channels specified as
state relations: 145l

A~~B
If | ~ |equates part of A, then

info flow is allowed from there to B.

* The dynamicity gives us
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Dynamic policy, observer relativity _é)?

A ~[> B
A's memory B’s memory
A’s cache B’s cache
partition partition
Flushable
caches
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Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

A ~[> B
Subscribe(d), Broadcast()
A's memory B’'s memory
A’'s cache B’s cache
partition partition
Flushable
caches
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Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

A ~[> B
Subscribe(d), Broadcast()
, _ A's memory B's memory
1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or
 Broadcast() 1st time after
B called Subscribe(A).
A's cache B’'s cache
partition partition
Flushable
caches
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Subscribe(d), Broadcast()
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1. Dynamic policy: A~>B ?

Only when A calls

e Subscribe(B), or

 Broadcast() 1st time after

B called Subscribe(A).

Oth : " | A's cache B’'s cache

X STWISE, o channet. partition partition
Flushable
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Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

, _ A's memory B's memory
1. Dynamic policy: A~>B ?

Only when A calls
e Subscribe(B), or x

 Broadcast() 1st time after
B called Subscribe(A).

_ A's cache B’s cache
¥ Otherwise, no channel. partition oartition
_ Flushable
* Example: caches
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Only when A calls
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Dynamic policy, observer relativity ﬁ)?

Two basic system calls: 2. Property must be observer relative!

Subscribe(d), Broadcast()

1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:
1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser



Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

_ 2. Property must be observer relative!
Subscribe(d), Broadcast()

* |f not, can’t prove the (bisimulation)

_ _ property for unrelated user C!
1. Dynamic policy: A~>B ? (i.e. where A ~/> C, B ~/> C)

Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

11 Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems | R. Sison, S. Buckley, T. Murray, G. Klein, G. Heiser



Dynamic policy, observer relativity ﬁ)?

Two basic system calls:

_ 2. Property must be observer relative!
Subscribe(d), Broadcast()

* |f not, can’t prove the (bisimulation)

_ _ property for unrelated user C!
1. Dynamic policy: A~>B ? (i.e. where A ~/> C, B ~/> C)

Only when A calls

Successful bisimulation:

As seen
 Subscribe(B), or o »® »® »@ 'C
e Broadcast() 1st time after : s S S
B called Subscribe(A). : : : :
% Otherwise, no channel. ® >® >® >®
t t t” t”
e Example:
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2. B calls Broadcast|()
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_ _ property for unrelated user C!
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Only when A calls

Successful bisimulation:

A n
e Subscribe(B), or rosorves @ @ >@— @ Zysece
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B called Subscribe(A). relation —= : : :
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e Example:
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Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

2. Property must be observer relative!

* |f not, can’t prove the (bisimulation)

property for unrelated user C!
(i.,e. where A ~/> C, B ~/> C)

Successful bisimulation:

As seen
by C
Preserves . >. ) >.o ” >’ 1)
“looks the = ° . S . S . S
sameto C” .
relation : . . .
t t’ t” t’”
Problematic case: A
s seen
A~/>B A~>B A~/>B
Adoescall @—>——>@—@ by €
Subscribe(B) S g e . s” .. . g e,
"*-. . No slch states
A doesn'’t call A~>B
Subscribe(B) @ A K
t t! t” tl”
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Dynamic policy, observer relativity ﬁ)?

Two basic system calls:
Subscribe(d), Broadcast()

1. Dynamic policy: A~>B ?
Only when A calls
e Subscribe(B), or

 Broadcast() 1st time after
B called Subscribe(A).

¥ Otherwise, no channel.

e Example:

1. A calls Subscribe(B)

2. B calls Broadcast|()

2. Property must be observer relative!

* |f not, can’t prove the (bisimulation)

property for unrelated user C!
(i.,e. where A ~/> C, B ~/> C)

Problematic case:

As seen
A~/>B A~>B A~/>B
Adoes call @—>@——>@——>@ by C

Subscribe(B) s g "L, g .. . s ..

. s "°..Noéhchstates
Adoesn'tcall g = MY S .
Subscribe(B) @ X X

t t’ t” t”’

e Solution: C’s property must treat states
(in the state machine) as observable
only whenever

e (Cisrunning, or
e When d is running, d ~> C.
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How to formalise an OS
enforces time protectlon’?

Versus threat scenario: o
trojan and spy P
+e e 3

0S & HW w
Abstract covert state + time to refle Make security property
strategies enabled by HW: precise enough to exclude

Partition or flush state; pad time' flows from covert state.

Demonstr Ing these principles,
we formaliged in Isabelle/HOL:

1. OS security model imposing ' 2. OS security property that is dynamic;
requirements on relevant parts of OS. } this makes it observer relative.

(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])

3. Proof our security property holds if % 4. Basic instantiation of OS model

OS model’s requirements hold. *xercising dynamic policy.
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How to formalise an OS
enforces time protection?

Versus threat scenario:
troj d
rolan-a; Zg ) . Thank youl!
OS <& HW X Q&A
Abstract covert state + time to reflect Make security property
strategies enabled by HW: precise enough to exclude
Partition or flush state; pad time. flows from covert state.
Demonstr._ating_these principles, Paper: https: //do . ora/ us
we formalised in Isabelle/HOL.: Artifact: https://doi.org/jzwk
1. OS security model imposing 2. OS security property that is dynamic;
requirements on relevant parts of OS. this makes it observer relative.
(Intended for seL4, but generic) (Improving on selL4’s of [Murray et al. 2012])
3. Proof our security property holds if 4. Basic instantiation of OS model
OS model’s requirements hold. exercising dynamic policy.
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