
Formalising the Prevention of Microarchitectural
Timing Channels by Operating Systems

Robert Sison†∗ , Scott Buckley∗ , Toby Murray† , Gerwin Klein‡∗ , and
Gernot Heiser∗

† The University of Melbourne, Melbourne, Australia
∗ UNSW, Sydney, Australia
‡ Proofcraft, Sydney, Australia

Abstract. Microarchitectural timing channels are a well-known mecha-
nism for information leakage. Time protection has recently been demon-
strated as an operating-system mechanism able to prevent them. How-
ever, established theories of information-flow security are insufficient for
verifying time protection, which must distinguish between (legal) overt
and (illegal) covert flows. We provide a machine-checked formalisation of
time protection via a dynamic, observer-relative, intransitive nonleakage
property over a careful model of the state elements that cause timing
channels. We instantiate and prove our property over a generic model
of OS interaction with its users, demonstrating for the first time the
feasibility of proving time protection for OS implementations.

1 Introduction

Microarchitectural timing channels present a major attack vector on informa-
tion security [12], with the Spectre attacks demonstrating that even seemingly
innocuous code can be subverted into a Trojan that leaks secrets via such chan-
nels [20]. Ge et al. recently introduced time protection mechanisms to prevent mi-
croarchitectural channels, experimentally demonstrating their effectiveness [11]
on a modified version of the seL4 operating system (OS) microkernel [19].

While seL4 comes with an extensive body of formal proofs, including infor-
mation-flow enforcement and freedom from storage channels [24], these proofs
do not consider properties about timing channels; the same is true for other OS
security proofs [2, 8, 21]. Work that does consider timing does not extend to the
full OS [4] or assumes mechanisms that are too expensive in practice [3].

Reasoning about timing channels is challenging, as timing is a non-functional
property and hardware details that affect timing are intentionally unspecified to
enable optimisations. While the correctness of time protection can, in principle,

© The Authors, 2022. This version of the contribution has been accepted for pub-
lication, after peer review but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is avail-
able online at: http://dx.doi.org/10.1007/978-3-031-27481-7_8. Use of this Accepted
Version is subject to the publisher’s Accepted Manuscript terms of use available here.

https://orcid.org/0000-0003-0313-9764
https://orcid.org/0000-0001-8810-9323
https://orcid.org/0000-0002-8271-0289
https://orcid.org/0000-0001-8883-0559
https://orcid.org/0000-0002-7069-0831
http://dx.doi.org/10.1007/978-3-031-27481-7_8
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

A B

Flushable
caches

A’s cache
partition

A’s memory B’s memory

B’s cache
partition

(a) Channels that would be
allowed by the property of
Murray et al. [24, 25] at all
times that A is running.

A B

Flushable
caches

A’s cache
partition

A’s memory

B’s cache
partition

(b) Time protection ex-
cludes channels via mi-
croarchitectural state used
by A when it is running.

A B

Flushable
caches

A’s cache
partition

A’s memory

B’s cache
partition

(c) Policy channels our
property can enforce to be
open only when A makes a
specific system call.

Fig. 1: Restriction of information flow allowed from domain A to B to occur only
via the channel indicated by the dotted lines, i.e. not from any shaded regions.

be reduced to functional properties [15], to date there is not even a precise
formulation of the security property it is meant to enforce.

Stating and verifying such a property faces two core challenges. Firstly, the
complexity of microarchitectural state requires abstraction to make formal rea-
soning feasible, while retaining sufficient precision to allow proving a meaningful
isolation property. Secondly, time protection is, by its nature, an asymmetric
property: A (trusted) security domain, e.g. a downgrader, may have the right to
communicate with another domain, but this overt information flow must hap-
pen in the absence of any covert information flow (through timing channels).
This point is explained later in Section 4.1.

To address the first challenge we formalise (Section 3) an abstraction of
the state elements related to temporal flows and their interaction with time,
which distinguishes overt memory state from covert microarchitectural state. The
abstraction separates that covert state according to the applicable elimination
mechanisms (spatial or temporal partitioning), as proposed by Heiser et al. [15,
16] and based on a minimally-augmented hardware–software contract [13].

We address the second challenge (Section 4) by formalising a dynamic and
observer-relative intransitive nonleakage property. This property generalises the
one used for seL4 by Murray et al. [24, 25] (Figure 1a), to enforce elimination of
flows via microarchitectural state (Figure 1b). We find that this requires a form
of policy channel specification, which allows arbitrary spatial precision, i.e. to
specify from where flows can occur. The natural formalisation of such specifi-
cations also supports arbitrary temporal precision, i.e. dynamic policy on when
flows can occur, as depicted by Figure 1c. The observation relation specifying
policy channels from a running domain A, as well as the granularity of steps
between observation points, are then both relative to the observer domain B.

Finally, we instantiate and prove (Section 5) our property over a generic
model of OS interaction with a formalisation of the threat scenario presented in

Formalising the Prevention of Microarchitectural Timing Channels by OSes 3

Section 2. In doing so, we demonstrate the first formal approach to capture a
precise, fine-grained, time-protection property, even in the presence of the greater
spatial and temporal precision of the policy channel specifications it enables.

All our results are formalised and machine checked using the Isabelle/HOL
interactive proof assistant [26] and are provided as supplement material [5].

2 Threat scenario

We adopt the threat scenario of Heiser et al. [15]: A spy in one security domain
attempts to obtain information from a sender in a different domain in violation
of the system’s security policy. We assume the defender’s worst-case scenario
where the sender is a Trojan that deliberately attempts to leak information, i.e.
a covert channel. If we can prevent this information flow, we implicitly rule out
inadvertent leaks (i.e. side channels).

Specifically we are looking at leakage throughmicroarchitectural timing chan-
nels [12]. These result from microarchitectural state, i.e. hardware state hidden
by the hardware–software contract (i.e. instruction-set architecture) but affected
by program execution. This includes caches and other hardware features whose
state depends on execution history, such as branch predictors and prefetchers.

We assume that the spy has access to an independent time source. The spy
observes the speed of its own progress, looking for variance in execution speed
that cannot be explained by any information to which it already has access (i.e.
its own state). This includes the latency of memory accesses [14, 27, 28, 32], the
latency of system calls operating on deterministic user state [11], or preemption
periods resulting from interrupts [11].

Such latency variations can be the result of the sender’s manipulation of
microarchitectural state, which can happen through accessing memory in specific
patterns, executing system calls with specific arguments, or initiating input-
output (I/O) operations that result in interrupts at a time chosen by the sender.

Importantly, covert channels must be precluded even where overt channels
are permitted. For example, consider an off-the-shelf web browser consisting
of hundreds of thousands of lines of code; it handles secret information (e.g.
passwords supplied by the user) but cannot be trusted to keep it secret. The
web browser runs in security domain H. It communicates with the outside world
via an untrusted network interface, running in domain L. The system’s security
policy requires that H can only communicate with L (and thus the outside
world) via a trusted encryption/filter server, acting as a downgrader, running
in domain D. While there is an overt channel H D L, the system must
prevent H from using a timing channel that bypasses D. In addition, the system
should prevent covert channels between H and D, even when an overt channel
is permitted, and likewise between D and L, as otherwise D might unwittingly
act as a courier for covert channel information between H and L.1

1 Ensuring that it does not act as a courier requires very sophisticated reasoning
about D, e.g. proving that it obeys constant-time programming discipline [1, 6].

4 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

We use the term policy channel to refer to information flow that is explic-
itly permitted by the system’s security policy and represented by OS protection
state, such as access control lists, or capabilities [10]; for example, seL4 uses
the latter. Time protection then becomes the requirement that a confidentiality
property is enforced, which prevents any information flow other than through
policy channels. We propose such a policy in Section 4.

Reasoning about time protection requires a system model that makes timing
channels explicit, by including microarchitectural state. The challenge is to keep
this model sufficiently abstract to apply to a wide class of real processors, yet
precise enough to allow reasoning about timing channels and their prevention.
We present such a model in Section 3. In Section 5 we present an OS security
model, parameterised over OS-specific features and processor-specific implemen-
tation details, using our model of microarchitectural state to prove enforcement
of a time protection property; we hope it will serve as a roadmap for proving the
effectiveness of time protection implementations (e.g. Ge et al. [11] for seL4).

3 Modelling channels by elimination strategy

As observed in Section 2, we need a model of microarchitectural state. This must
be sufficiently precise to support reasoning about the absence of channels that
exploit it, while abstracting away as many implementation details as possible, so
it can apply to a large class of real processors. We defer to Section 5 a description
of our full state model, depicted in Figure 3b; here, we explain the philosophy
behind its microarchitectural and other timing-affecting elements.

Heiser et al. [15] observe that, to implement time protection, the OS only
needs to know how microarchitectural state can be partitioned between security
domains. Partitioning can either be spatial, where the OS can force a domain to
only access a specific part of the state, or temporal, where state is exclusively
owned by one partition at a time, and reset to a defined state when the OS
hands ownership to another partition. Implementing time protection is possible
if the hardware–software contract ensures that microarchitectural state can be
partitioned either spatially or temporally, where the latter comes down to the
OS being given a mechanism to reset (flush) that state.

For simplicity, we refer to state that can be spatially partitioned as partition-
able, while state that can be temporally partitioned we call flushable.

To reason about how usermode execution may affect such state, we assume
that this happens exclusively through referencing memory (data or instruction)
addresses. This matches typical real hardware, for which any state directly ac-
cessed by programs is architected and explicitly context-switched by the OS; for
such hardware, microarchitectural state can only be accessed indirectly via ad-
dresses. Note that programs (including the OS) can only issue virtual addresses.

3.1 Flushable microarchitectural state

For our purposes it is not necessary to distinguish between different parts of
flushable state (e.g. caches vs. branch-predictor state vs. prefetcher state), even

Formalising the Prevention of Microarchitectural Timing Channels by OSes 5

if the hardware provides different mechanisms for flushing different parts of it.
We only need to deal with the complete collection of such state, and treat the
sum of flushing mechanisms as a single operation.

Furthermore, it does not matter whether issuing distinct addresses affects
different parts of microarchitectural state (as with caches) or causes different
changes in the same state (as with state machines used in prefetchers). All that
matters is capturing which state might be affected; for that we can make the
worst-case assumption that each address in a domain maps to potentially differ-
ent state, but some address in a different domain may map to the same state.

Thus we model flushable state (flst) as a simple function from address to
boolean, representing whether a state referred by a particular address is cur-
rently affected – the entire flst is considered observable to the currently executing
program. We model OS and user operations to modify flst in an under-defined
way, assuming that secrets of the currently running domain can be stored in flst.

In the absence of flushing, our confidentiality property will not hold for this
configuration, as secrets are being transmitted through flst. We therefore need
to show that the OS performs the flush when switching domains, but also that
any changes made to flst during the domain switch (during which the OS must
issue addresses) have a deterministic effect on flst: After the flush, the OS must
only issue addresses in a sequence that is not affected by user secrets.

3.2 Partitionable microarchitectural state

Partitionable state generally exists outside the processor core (typically caches
other than the on-core first-level cache). Such state is accessed by physical ad-
dress, meaning it has undergone address translation by the memory-management
unit (MMU). Partitioning may use explicit hardware mechanisms, or may be
achieved by the OS restricting the address mapping so that addresses from dif-
ferent partitions access disjoint cache state (this is referred to as page colour-
ing [11, 17, 22]). This assumes that the OS understands how collisions may occur,
which is realistic for contemporary hardware.

We model partitionable state (pst) as a function from address to boolean,
similarly to flst. We do not explicitly model how cache collisions occur between
addresses, instead we assume that the OS has set up the memory map to prevent
collisions between partitions. By modeling both user and OS operations to only
access memory visible to the present domain, we can show that no secrets are
imprinted on the pst in a way that is visible to another domain.

However, the above assumptions break down if the OS accesses the same
memory locations while operating on behalf of different user domains. This is
unavoidable, as the OS must access memory while performing a domain switch,
meaning that it is impossible to completely partition the OS’s memory accesses.
We call such non-partitionable memory shared OS memory, and its accesses may
potentially leak secrets via their corresponding pst impacts.

We model this leak by parameterising our model over the set of all addresses
in the shared OS memory in union with all addresses that collide with them. We
then allow a user domain to affect the pst of that set, alongside pst corresponding

6 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

to its own memory. This forces, at the time of domain switch, a flush of the pst
for the shared OS addresses and their collisions, to ensure that they convey no
secrets from the previously executing domain to the next one. The mechanism
used, and cost incurred, for this flush depends on what the architecture offers.

3.3 Interrupts and other directly observed impacts on time

We have thus far encoded the spy’s ability to make time-related observations via
variations in memory access latency as direct user observations of flst and pst, as
these are the primary channels through which execution time can vary. However,
some leaks can happen through observation of the real-time clock, which are not
directly related to shared microarchitecture.

Interrupts are inherently non-deterministic (their arrival depends on the en-
vironment beyond the control of the OS). This can be used as a channel [11]: a
domain initiates an I/O operation such that the interrupt indicating completion
arrives while another domain is executing. The time the OS takes to handle the
interrupt can be observed as a gap in execution by the preempted domain.

Time protection prevents this channel by partitioning interrupts between
domains, masking off any interrupts not belonging to the current domain. The
preemption-timer interrupt, which causes a domain switch, is not subject to
this masking; the rest we call user interrupts. We will model hardware masking
of user interrupts by asserting that they can only arise during user execution
depending on the state of devices belonging to the current domain (Section 5.2).

Our model enforces the following timing properties of interrupt arrivals:

– Timer interrupts arrive at a fixed interval, aside from delays described below.
– User execution will continue until halted either by the timer interrupt arriv-

ing at its fixed-interval time, or by a user interrupt arriving before that.
– There is a worst-case execution time (WCET) for handling an interrupt.

Handling a user interrupt may then delay the arrival of a timer interrupt by
an amount of time up to that WCET after its fixed-interval time.

As interrupt-related leaks are always via accurate observation of the time,
we now turn to how we model time to be treated as observable by our property.

We model time as a numeric field of the state, tm, which we consider to be
observable only by the currently-running domain; others are only able to observe
at what point in the schedule the OS resides currently, but not tm directly.

Rather than modelling any automatic progression of time, we bake it in man-
ually as the following assumptions to our under-defined user and OS operations:

– Flushing the flst will take some amount of time that depends only on the
original flst state, up to some predefined WCET.

– Partially flushing the pst (for shared OS memory) takes an amount of time
that depends only on the part of pst being flushed, up to a predefined WCET.

– Interrupt-handling OS operations obey a predefined WCET (as just noted).
– The OS can perform a padding operation that will progress time to a specified

value, without changing any other state (by decrementing a register-held
counter in a tight loop, or possibly using hardware support [31]).

Formalising the Prevention of Microarchitectural Timing Channels by OSes 7

Our domain-switch operation performs the following tasks:

1. a partial flush of OS shared memory addresses in pst;
2. a full flush of the flst;
3. changing the currently running domain over to the next domain, according

to the deterministic schedule (see Section 4);
4. padding to the end of the allocated time.

We know that the padding at the end of this operation will always get us to
a predetermined time, as we calculate the end-of-switch time to account for the
WCETs for flst and pst flushes, as well as accounting for a potentially late start
due to the handling of a user interrupt before domain-switch. At the start of such
a domain-switch, as well as at many points in the middle of these operations,
the tm field contains secrets from the domain who just executed. However, these
secrets are removed when we pad time to a predetermined value.

The actual amount of time allocated to each domain, as well as the sequence
of domains scheduled to execute, is completely predetermined; it is not possible
to influence how long each timeslice will be, or which domain will execute next.
This is implemented via an appropriately adapted scheduler oracle [24], whose
details we relegate to the Isabelle/HOL supplement material [5].

4 Formalising Time Protection

What does time protection mean formally, and why are previous security def-
initions [25], used to state absence of storage channels in OSes, insufficient to
express it? In this section we answer these questions by formalising a new dy-
namic and observer-relative intransitive nonleakage property.

Let domain be the set of security domains ranged over by u, v, w, etc.
Following Murray et al. [24, 25], we distinguish user domains, which include one
or more user-mode processes, from the scheduler domain, which represents the
parts of the OS responsible for scheduling the execution of user-mode processes.
Therefore let sched ∈ domain be the distinguished scheduling domain. At any
time, a single domain is running, called the current domain: execution proceeds
in a sequence of steps in which sched is interleaved between other domains (to
choose the next domain that is to execute after the arrival of a timer interrupt).

Let state be the type of system states, s, t, etc. Then dom s denotes the
current domain in state s. The part of the system state observable to domain u
in state s is defined by an equivalence relation u∼, such that this part of the state is
equal between states s and t iff s

u∼ t. The state of the scheduling domain includes
which domain is currently running, hence: s sched∼ t =⇒ dom s = dom t [25].

Information-flow security requires that for all domains u, for each step of
execution, u only learns information it is supposed to. If time protection holds,
what information is domain u allowed to learn? As in prior work [24, 25] we
prove deterministic scheduling. Therefore, at all times, all domains are assumed
to know which domain is the current domain, i.e. all information given by sched∼ .
Domain u is also allowed to learn everything it can observe (equivalently, already

8 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

knows), i.e. all information given by u∼. Finally, it is also allowed to learn certain
information communicated to it by the current domain in that execution step.

4.1 State-Dependent Policy Channels

One of our key insights is that according to time protection, what constitutes
this “certain information” depends on whether u is the current domain, i.e. time
protection is an asymmetric property. Specifically, when u is not the current
domain, time protection says that at most it is allowed to learn the information
communicated by the current domain via overt channels (those allowed by the
current protection state); but none via covert channels (including microarchitec-
tural state). This is strictly less than all information observable by the current
domain, given by dom s∼ where s is the state from which the step occurred, because
dom s∼ necessarily includes microarchitectural state visible to the current domain
(e.g. its caches influencing its execution speed as captured in our model by tm).

Thus, departing from prior nonleakage properties, for two domains v and u

let
|v u|∼ be a state equivalence relation that defines the part of the state whose

contents domain v is allowed to send to domain u on an execution step. If v

is allowed to send no information to u, then
|v u|∼ is the trivial relation that

holds for all states. As we demonstrate later in Section 5, this formulation is
sufficiently general to specify dynamic policies, since the part of the state via
which domain v is allowed to communicate with u can depend on the state itself.
We call

|v u|∼ a policy channel, as it defines the allowed channel from v to u.
With these definitions we can define our top-level security property as follows.

For now, the argument u to each of obs-reachable u s and obs-Step u can be
ignored (we will explain its meaning directly, in Section 4.2); the former can be
read as saying that state s is reachable via a finite number of steps of the latter.

Definition 1 (Observer-relative big-step confidentiality).

obs-confidentiality u ,

∀s t. obs-reachable u s ∧ obs-reachable u t −→

s
sched∼ t −→ s

|dom s u|∼ t −→ s
u∼ t −→

(∀s′ t′. (s, s′) ∈ obs-Step u ∧ (t, t′) ∈ obs-Step u −→ s′
u∼ t′)

This definition says that an arbitrary observer domain u, on an execution
step, is allowed to learn the scheduler state (sched∼), the information that the

current domain is allowed to send it via the policy channel (
|dom s u|∼), and

anything it knew or could have observed already (u∼), by saying that if two
initial, reachable states s and t agree on this information, then u’s view of the
states s′ and t′ reached after a single step must be identical: s′ u∼ t′.

Formalising the Prevention of Microarchitectural Timing Channels by OSes 9

User Kernel User Kernel

v ~> u

v

As seen
by

u

w

v ~/> u v ~/> u

v ~/> w v ~> w

v calls send(v,u) v calls send(v,w)

Fig. 2: Observer-relative state transition system model.

4.2 Policy-dependent state observability

What constitutes an execution step? Our second major observation is that, for
time protection, the answer depends on which domain is observing the execution.

Figure 2 provides an illustration of this phenomenon. It depicts (top row)
a single timeslice of domain v (the current domain), in which it performs two
consecutive system calls. First it makes a system call to communicate with do-
main u, and then subsequently to communicate with domain w. For each system
call, a user-mode step occurs in which v first computes the data it wishes to
communicate (e.g. the system call arguments), followed by an OS step in which
the OS carries out the system call (i.e. puts into effect the communication). For
simplicity, assume the protection state authorises both system calls.

Let us consider what each domain u and w is allowed to observe and when.
From u’s point of view (middle row of Figure 2), since v communicates with it,
it implicitly learns that this communication has occurred. Thus it observes the
occurrence of the second step (the first OS step) that v makes. However what v
does before that step occurs should remain opaque: e.g. the precise number of
user-mode state changes required to compute the system call arguments should
not be revealed to u (though it can of course infer what the system call arguments
must have been, and so those are observable to it).

From w’s point of view (bottom row of Figure 2), all of this activity is opaque:
the precise number of execution steps that v performs prior to the OS step that
carries out the communication from v to w should remain hidden to w. Indeed
from w’s point of view, v performs a single execution step from the beginning of
its timeslice up to the OS step that performs the v-to-w communication.

Thus execution steps are very much in the eye of the beholder. Our time
protection formalisation captures this idea as follows. We require the existence of
an underlying small-step transition system that defines the system’s behaviour.
From this we construct for each domain u its observer-relative, big-step transition
system that defines u’s view of the system’s execution by coalescing together
consecutive small-steps between states that are unobservable to u. Which states
are observable to u is naturally captured in the policy channel specification

|v u|∼ :

10 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

OS
entry

OS
exit

User
step

OS
step

(a) Transition system.

record state ,

mem :: mem /* Where mem , addr ⇒ int */
flst :: addr ⇒ bool /* Flushable microarch. */
pst :: addr ⇒ bool /* Partitionable microarch. */
tm :: nat /* Time */
dom :: domain /* Current domain */
devs :: device set /* Interrupt-generating devices */
event :: {Syscall,UserInterrupt,TimerInterrupt}
args :: args /* System call arguments */
prot :: prot /* Protection state */

(b) State model.

Fig. 3: Generic OS on which we model enforcement of time protection.

When s
|dom s u|∼ t such that this relation is non-trivial (i.e. the current domain

is allowed to communicate with u), then state s is observable to domain u.
This explains why Definition 1 takes the observer domain u as an argument.

This definition is defined against a set of big-step transition systems, one for each
domain u, that defines u’s view of the underlying system’s small-step transition
system. The state reachability predicate is also parameterised by the observ-
ing domain u: obs-reachable u s means that state s is reachable in u’s big-step
transition system. Similarly for the step relation: obs-Step u is the set of state
transitions in the big-step transition system that represents u’s view.

Our confidentiality property (Definition 1) is a generalisation of the one used
for the seL4 microkernel [24, 25], which is an intransitive nonleakage property
that confines the allowed information flows to those according to a static (possi-
bly intransitive) information flow policy “ ”: v u holds iff the policy permits
information to flow directly from domain v (while v is the current domain) to
domain u. Our property generalises theirs in that (1) fixing our policy chan-

nel relation
|dom s u|∼ to be dom s∼ whenever dom s u and the universal set

otherwise, and (2) fixing all big-step transition systems to be the same for all
observers u, results in their property (confidentiality-u, p9 of Murray et al [24]).

5 System model of OS-enforced time protection

We have thus far presented an explanation of how to model covert state (Sec-
tion 3) and a confidentiality property capable of distinguishing between overt and
covert state (Section 4), both as needed to express and model time protection.

Here we apply these principles to demonstrate that, regardless of the set of
system calls supported by the OS and the architecture that it runs on, an OS
designer now has the means to prove formally that an OS implementation for
any given architecture enforces time protection, as long as the designer: (1) can

Formalising the Prevention of Microarchitectural Timing Channels by OSes 11

prove that each of its system call handling routines permits only information flow
via policy channels that exclude microarchitecture, (2) has proved or can reliably
assume the functionality of certain architectural features key to time protection,
and (3) has reliably measured and bounded the WCETs of the above.

5.1 Model overview and property

We achieve this level of generality with a model (Figure 3) that abstracts the
essential elements of OS-enforced time protection over the following parameters:

1. an OS-specific set of system calls, their implementations, and specifications
of their policy channels that can depend on arguments and protection state;

2. architecture-specific implementations of
(a) an interrupt handling routine and
(b) a domain switch routine that occurs on timer interrupt;

3. the WCETs of all of the above; and
4. the types of memory addresses addr , domain IDs domain, IRQ-generating

device state device, syscall arguments args, and protection state prot .

Over this model, we instantiate our property so that Definition 1 expresses
that the OS enforces time protection, in the sense that information only ever
flows to a given user domain from the current domain’s overt state elements
(like a system call’s arguments and relevant memory) as specified by some pol-
icy channel, and not ever via any covert state elements (like microarchitecture
and user-configured device interrupts) that impact timing. Importantly, time
(tm) and microarchitectural state that could influence memory access time (the
entire flst, and the relevant pst partition) are always considered observable to
the current domain, so our property ensures the absence of timing channels as
directly observed after domain switch, and from subsequent variations in mem-
ory access latency, respectively. Formally, we then prove that Definition 1 holds
at all times as seen by every possible user domain:

Theorem 1 (OS model enforces confidentiality with time protection).

∀u. obs-confidentiality u

Our model and its proofs are mechanised in about 7.9K lines of Isabelle/HOL
proof script, of which about 2.1K lines are the adaptations described in Section 4
of prior mechanised theory [24, 25, 29] – all are provided as supplement material
[5]. This includes an instantiation of our generic model, for a pair of system calls
with tightly specified policy channels, to ensure it is nontrivial.

We now describe the requirements our generic model imposes on an OS and
its configuration that make it possible to prove that it enforces time protection.
In particular, we believe that any OS that implements time protection, such as
that of Ge et al. [11] for seL4, can satisfy all these requirements.

12 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

5.2 User steps

The user-step model captures requirements on the memory subsystem and device
hardware and their adequate configuration by the OS to ensure the partitioning
between domains of (i) memory, through address mappings; (ii) caches, through
colouring ; and (iii) user-configured interrupts, through masking.

It also captures assumptions about the spy and sender: They can choose when
to make a syscall and with which argument values, but cannot directly modify
the OS protection state; furthermore, they can program their devices to cause
interrupts. Thus, we model the reason for OS entry, system call arguments, and
device state in the state fields event, args, and devs respectively (see Figure 3b)
and specify the user step as free to choose them in a manner dependent on
the state accessible to the currently running domain. In contrast, we model
protection state with field prot but disallow the user step from modifying it.

Memory and cache partitioning We partition both memory and pst by se-
curity domain, assuming a mapping addr-domain :: addr ⇒ domain. We consider
the parts of mem that belong to some domain u to be the input addresses where
addr-domain a = u, and the same for pst.

User steps are restricted to those that do not read from or write to any part
of mem that does not belong to the executing domain u. A similar restriction is
enforced for pst, except that we do allow user steps to modify parts of the pst
outside of u’s domain if they are in the shared OS address set. While in reality
OS memory will only be affected by system calls, allowing user modification of
shared OS memory is a sound over-approximation that simplifies our model.

We implement these restrictions by “quarantining” a transition: we mask off
any state that should not be accessed, perform the transition on this modified
state, and then return the masked-off data to the output state. A transition that
does not read or write outside of its domain will not be modified by quarantining.
This process is similar to prior models of OS memory protection [9].

In reality, this kind of memory protection is implemented by the OS correctly
configuring the MMU and is covered by typical integrity proofs [30]. Cache parti-
tioning might be implemented via colouring. Shared OS memory is, by definition,
not partitioned.

Interrupt and device partitioning We partition interrupts by domain, via
partitioning devices by domain. The state field devs abstracts the states of a
set of devices, each assigned to some domain by a parameter device-domain ::
device ⇒ domain. Note it is this assignment of ownership, and not the device
type we abstract over, that matters for our model; furthermore, we assume that
separate devices do not communicate with each other.

We abstract interactions with devices via mostly-arbitrary modifications to
the devs field, specifying that user steps (as well as interrupt-handling and syscall
steps) can only access or modify the device subset belonging to the currently exe-
cuting domain. Further, we model the user as being able to choose the event indi-
cating the reason for entry into the OS to be set to UserInterrupt or TimerInterrupt

Formalising the Prevention of Microarchitectural Timing Channels by OSes 13

in a manner dependent on that device subset. This model allows us to reason
about users interacting with devices outside of the observability points between
transitions, and allows for interrupts to be raised at any point during a user’s
execution, and for their details and timing to be influenceable only by that user.

– If a TimerInterrupt has caused the end of execution, then the time must be at
some ideal timer interrupt point, or possibly delayed by up to the interrupt-
handling WCET. At this point we will perform a domain-switch.

– If execution was ended by a user interrupt or a syscall, the time must be
strictly before the ideal timer interrupt point. At this point we will perform
the syscall or handle the user interrupt.

In a real-world OS, we expect the interrupt partitioning abstraction to be
implemented via themasking of interrupts associated with non-running domains,
where any two partitions have a disjoint set of unmasked interrupts, with the
OS switching the mask when switching partitions. The timing constraints result
from the timer inevitably arriving, resulting in a domain switch.

5.3 OS steps

The OS-step model captures requirements on domain switch (triggered by
a deterministic timer interrupt), syscall handling, and handling of unmasked
user interrupts, each indicated by the event field of the state taking the value
TimerInterrupt, Syscall, or UserInterrupt respectively at OS entry.

Domain switch The domain-switch step contains the most concretely defined
semantics of any step in our model. Once the appropriate interrupt has arrived,
the domain-switch step will pass execution on to another security domain, and
will execute some security measures to prevent leaks through microarchitectural
state. The specific semantics of this step are as follows.

1. Partially flush the pst: flush all addresses conflicting with shared OS memory;
time bounded by w1.

2. Flush the flst: set the entire flst to a predefined value; time bounded by w2.
3. Change the domain: update the dom field of the state according to the

schedule oracle; time bounded by w3.
4. Pad the execution time to make the overall latency constant.

If T0 is the ideal time for the timer interrupt to occur, w0 the WCET of
handling another interrupt (i.e. the maximum time by which the timer interrupt
may be delayed), and w3 includes any operations for handling the timer interrupt
that are not related to time protection (such as saving processor state), then
Step (4) defers further execution until time T0 + w0 + w1 + w3 + w3.

The result of this padding is that nothing a domain can influence will change
the exact time when execution is passed to the next domain. The new domain
will also begin execution with an empty flst, and a pst partition that is unchanged
apart from the shared OS addresses and its collisions, which have been flushed.

14 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

These same operations can be performed in a real-world OS, using mostly
hardware-provided primitives to perform flushing and a busy loop for padding
if no time padding primitive [31] is provided by the hardware.

Syscall handling and policy channels Wemodel system call handling as con-
sisting of (1) a decode phase that determines whether the requested operation is
permitted by the protection state, and if so, (2) a commit of the requested oper-
ation. Moreover, policy channels (the allowed information to be transmitted) for
system calls are specified via a parameter commit-channels of the form mem rel,
thereby excluding any covert parts of the state by construction. Whether a sys-
tem call transmits information to domain u, and what information it may trans-
mit, depend on which system call was made (i.e. the system call arguments args),
and whether it is authorised (i.e. the protection state prot). These together form
the policy-determining state fields that, with commit-channels, are used to de-
fine

|dom s u|∼ . Specifically
|dom s u|∼ is defined so that (a) the commit-channels

information is revealed to u only when args and prot imply that u is the recip-
ient of the system call and the system call is authorised, and (b) args and prot
themselves are allowed to be revealed to u only under these same conditions.

Thus when a domain makes a system call, other domains can learn about it
only when that system call is authorised, in which case only the recipient of the
syscall gets to learn about its occurrence, and all they can learn is the intended
information transmitted by the syscall.

To prove this, we impose on the user-supplied parameters the proof obliga-
tions: (1) an integrity property enforcing the decode phase should only inspect,
not change, any of policy-determining state fields; and (2) a confidentiality prop-
erty on the commit phase enforcing it obeys the policy induced by these fields,
i.e. that any changes to state accessible to the observing domain u flow only via
locations specified by

|dom s u|∼ .
We provide an example instantiation of the parameters that we prove meets

these obligations: a simple model of capability-based access control over a broad-
cast/subscribe pair of system calls for one-way messaging between domains.

User interrupt handling We underspecify interrupt-handling operations in
our model: We model the timer interrupt, but no specific operations in response
to user interrupts. We assume that in response to a user interrupt, the OS will
perform some action that may modify parts of the user state – this matches
microkernels, like seL4, that relegate interrupt handling to user domains.

Consequently, we model the user interrupt very similarly to the user step
operation: We specify that only the appropriate parts of mem and pst can be
read or modified, limit modifications to devs to those belonging to the currently
domain, and do not allow modifications to the prot state.

Bringing all of this together, we define a small-step transition system alternating
(Figure 3a) between user steps restricted as described in Section 5.2 and OS steps

Formalising the Prevention of Microarchitectural Timing Channels by OSes 15

as described in Section 5.3; this forms the basis for the observer-relative big-step
systems upon which our security property is stated (Theorem 1).

6 Related work

Prior proofs of confidentiality for OSes [8, 21, 24] have generally focused only
on covert flows via storage channels (memory and registers), ignoring time and
microarchitectural state.

Barthe et al. presented formal proofs of the elimination of cache channels
by flushing the complete cache hierarchy on a context switch [3], an expen-
sive approach that also does not deal with other microarchitectural state. The
same group verified stealth memory [18], where the OS reserves some pages and
all their cache aliases for cryptographic applications [4]; this protects against
side-channel attacks but cannot prevent a Trojan leaking through non-stealth
memory. To our knowledge, no prior formalisation of OS security concurrently
deals with both partitionable and flushable state, as required by time protection.

Liu et al. [23] prove a property they call temporal isolation for an extension of
the mCertiKOS kernel with real-time scheduling. Despite its name, their prop-
erty does not rule out timing channels between domains. Rather it focuses on
the scheduler, proving that the behaviour of one domain cannot interfere with
the scheduling of another (e.g. by preventing it from missing a deadline). This
work might be combined with our approach in future to extend ours beyond the
confines of simple deterministic domain scheduling.

Our security property (Definition 1) allows for specifying dynamic policies,
in which the information allowed to be released on a step depends on the current
state. This is a feature also present in prior information flow proofs for OSes [8,
21, 24] and we expect policies from prior work, including the recent work of Li et
al. [21], should be expressible in our framework. Unlike our property, however,
none of these prior works allow for defining certain states as being observable to
some observers but not others, which we argued in Section 4.2 is crucial for a
precise statement of time protection with dynamic policies.

The use of two distinct phases to model system call handling, first establishing
preconditions that then guarantee that the call can succeed, was used in EROS [7]
and adopted by seL4 [19].

7 Conclusions

We have presented a fully machine-checked formalisation of time protection and
its enforcement by an operating system that is generic enough to be adapted to
any individual OS implementation on any architecture that provides the neces-
sary hardware support. By proving our time protection property relative to the
requirements formalised by our OS model, we provide a roadmap for such future
OS verification efforts.

16 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

This work demonstrates for the first time the feasibility of formal proof of
the elimination of microarchitectural timing channels between users by the op-
erating system they are running on. We hope this work helps to raise the level
of assurance and responsibility taken by OSes to protect the confidentiality of
their users, while serving to clarify what must be asked of the architectures that
will make their implementation possible.

Acknowledgements

We thank our anonymous reviewers, as well as Johannes Åman Pohjola for his
feedback on our manuscript. This paper describes research that was co-funded
by the Australian Research Council (ARC Project ID DP190103743).

Bibliography

[1] Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: USENIX Security Symposium. pp. 53–
70 (2016)

[2] Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying isolation
and availability in an idealized model of virtualization. In: Proceedings of
the 17th International Symposium on Formal Methods (FM). Lecture Notes
in Computer Science, vol. 6664, pp. 231–245. Springer (2011)

[3] Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Cache-leakage resilient
OS isolation in an idealized model of virtualization. In: Proceedings of the
25th IEEE Computer Security Foundations Symposium. pp. 186–197. IEEE
(2012)

[4] Barthe, G., Betarte, G., Campo, J.D., Luna, C.D., Pichardie, D.: System-
level non-interference for constant-time cryptography. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Secu-
rity, Scottsdale, AZ, USA, November 3-7, 2014. pp. 1267–1279. ACM (2014),
https://doi.org/10.1145/2660267.2660283

[5] Buckley, S., Sison, R., Klein, G.: An Isabelle/HOL formalisation of microar-
chitectural timing channel prevention by operating systems - VM artifact
and proof release (2022), https://zenodo.org/record/7340166

[6] Cauligi, S., Disselkoen, C., von Gleissenthall, K., Tullsen, D.M., Stefan, D.,
Rezk, T., Barthe, G.: Constant-time foundations for the new spectre era.
In: Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London,
UK, June 15-20, 2020. pp. 913–926. ACM (2020), https://doi.org/10.1145/
3385412.3385970

[7] Chen, H., Shapiro, J.S.: Using build-integrated static checking to pre-
serve correctness invariants. In: Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security, CCS 2004, Washing-
ton, DC, USA, October 25-29, 2004. pp. 288–297. ACM (2004), https:
//doi.org/10.1145/1030083.1030122

[8] Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow
security for C and assembly programs. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 648–664 (2016)

[9] Daum, M., Billing, N., Klein, G.: Concerned with the unprivileged: User
programs in kernel refinement. Formal Aspects of Computing 26(6), 1205–
1229 (Oct 2014), https://trustworthy.systems/publications/nicta_full_text/
7114.pdf

[10] Dennis, J.B., Van Horn, E.C.: Programming semantics for multipro-
grammed computations. Communications of the ACM 9, 143–155 (1966)

[11] Ge, Q., Yarom, Y., Chothia, T., Heiser, G.: Time protection: the missing
OS abstraction. In: EuroSys Conference. ACM, Dresden, Germany (Mar
2019), https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf

https://doi.org/10.1145/2660267.2660283
https://zenodo.org/record/7340166
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/1030083.1030122
https://doi.org/10.1145/1030083.1030122
https://trustworthy.systems/publications/nicta_full_text/7114.pdf
https://trustworthy.systems/publications/nicta_full_text/7114.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf

18 R. Sison, S. Buckley, T. Murray, G. Heiser, G. Klein

[12] Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal of
Cryptographic Engineering 8, 1–27 (Apr 2018), https://trustworthy.systems/
publications/full_text/Ge_YCH_18.pdf

[13] Ge, Q., Yarom, Y., Heiser, G.: No security without time protection: We need
a new hardware-software contract. In: Asia-Pacific Workshop on Systems
(APSys). ACM SIGOPS, Korea (Aug 2018), https://trustworthy.systems/
publications/full_text/Ge_YH_18.pdf

[14] Gullasch, D., Bangerter, E., Krenn, S.: Cache games – bringing access-based
cache attacks on AES to practice. In: Proceedings of the IEEE Symposium
on Security and Privacy. pp. 490–505. IEEE, Oakland, CA, US (May 2011)

[15] Heiser, G., Klein, G., Murray, T.: Can we prove time protection? In: Work-
shop on Hot Topics in Operating Systems (HotOS). pp. 23–29. ACM, Berti-
noro, Italy (May 2019), https://trustworthy.systems/publications/full_text/
Heiser_KM_19.pdf

[16] Heiser, G., Murray, T., Klein, G.: Towards provable timing-channel pre-
vention. ACM Operating Systems Review 54, 1–7 (Aug 2020), https:
//trustworthy.systems/publications/full_text/Heiser_MK_20.pdf

[17] Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems 10, 338–359 (1992)

[18] Kim, T., Peinado, M., Mainar-Ruiz, G.: StealthMem: system-level protec-
tion against cache-based side channel attacks in the cloud. In: Proceedings
of the 21st USENIX Security Symposium. pp. 189–204. USENIX, Bellevue,
WA, US (Aug 2012)

[19] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin,
P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T.,
Tuch, H., Winwood, S.: seL4: Formal verification of an OS kernel. In: ACM
Symposium on Operating Systems Principles. pp. 207–220. ACM, Big Sky,
MT, USA (Oct 2009), https://trustworthy.systems/publications/nicta_full_
text/1852.pdf

[20] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Ham-
burg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.:
Spectre attacks: Exploiting speculative execution[abridged version]. Com-
munications of the ACM 63, 93–101 (Jun 2020)

[21] Li, S.W., Li, X., Gu, R., Nieh, J., Hui, J.Z.: A secure and formally verified
Linux KVM hypervisor. In: IEEE Security and Privacy (2021)

[22] Liedtke, J., Härtig, H., Hohmuth, M.: OS-controlled cache predictability
for real-time systems. In: IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). pp. 213–223. IEEE, Montreal, CA (Jun
1997)

[23] Liu, M., Rieg, L., Shao, Z., Gu, R., Costanzo, D., Kim, J.E., Yoon, M.K.:
Virtual timeline: a formal abstraction for verifying preemptive schedulers
with temporal isolation. Proceedings of the ACM on Programming Lan-
guages 4(POPL), 1–31 (2019)

[24] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., Klein, G.: seL4: from general purpose to a proof of infor-

https://trustworthy.systems/publications/full_text/Ge_YCH_18.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_18.pdf
https://trustworthy.systems/publications/full_text/Ge_YH_18.pdf
https://trustworthy.systems/publications/full_text/Ge_YH_18.pdf
https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf
https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf
https://trustworthy.systems/publications/full_text/Heiser_MK_20.pdf
https://trustworthy.systems/publications/full_text/Heiser_MK_20.pdf
https://trustworthy.systems/publications/nicta_full_text/1852.pdf
https://trustworthy.systems/publications/nicta_full_text/1852.pdf

Formalising the Prevention of Microarchitectural Timing Channels by OSes 19

mation flow enforcement. In: IEEE Symposium on Security and Privacy. pp.
415–429. IEEE, San Francisco, CA (May 2013), https://trustworthy.systems/
publications/nicta_full_text/6464.pdf

[25] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterfer-
ence for operating system kernels. In: International Conference on Certified
Programs and Proofs. pp. 126–142. Springer, Kyoto, Japan (Dec 2012),
https://trustworthy.systems/publications/nicta_full_text/6004.pdf

[26] Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer
(2002)

[27] Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures:
The case of AES. In: Proceedings of the 2006 Crytographers’ track at the
RSA Conference on Topics in Cryptology. pp. 1–20. Springer, San Jose, CA,
US (2006)

[28] Percival, C.: Cache missing for fun and profit. In: BSDCan 2005. Ottawa,
CA (2005), http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf

[29] seL4 microkernel code and proofs, https://github.com/seL4/
[30] Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein, G.:

seL4 enforces integrity. In: International Conference on Interactive Theorem
Proving. pp. 325–340. Springer, Nijmegen, The Netherlands (Aug 2011),
https://trustworthy.systems/publications/nicta_full_text/4709.pdf

[31] Wistoff, N., Schneider, M., Gürkaynak, F., Benini, L., Heiser, G.: Microar-
chitectural timing channels and their prevention on an open-source 64-
bit RISC-V core. In: Design, Automation and Test in Europe (DATE).
IEEE, virtual (Feb 2021), https://trustworthy.systems/publications/full_
text/Wistoff_SGBH_21.pdf

[32] Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3
cache side-channel attack. In: Proceedings of the 23rd USENIX Security
Symposium. pp. 719–732. USENIX, San Diego, CA, US (2014)

https://trustworthy.systems/publications/nicta_full_text/6464.pdf
https://trustworthy.systems/publications/nicta_full_text/6464.pdf
https://trustworthy.systems/publications/nicta_full_text/6004.pdf
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
https://github.com/seL4/
https://trustworthy.systems/publications/nicta_full_text/4709.pdf
https://trustworthy.systems/publications/full_text/Wistoff_SGBH_21.pdf
https://trustworthy.systems/publications/full_text/Wistoff_SGBH_21.pdf

	Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems

